A group of the following students got the following score in a test:6,9,12,15,and 18.compute the mean of the sample mean
We have population values 6,9,12,15,18, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{6+9+12+15+18}{5}=12"
Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{18}\\approx4.24264"
Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 6,9,12 & 9 \\\\\n \\hdashline\n 2 & 6,9,15 & 10 \\\\\n \\hdashline\n 3 & 6,9,18 & 11 \\\\\n \\hdashline\n 4 & 6,12,15 & 11 \\\\\n \\hdashline\n 5 & 6,12,18 & 12 \\\\\n \\hdashline\n 6 & 6,15,18 & 13 \\\\\n \\hdashline\n 7 & 9,12,15 & 12 \\\\\n \\hdashline\n 8 & 9, 12,18 & 13 \\\\\n \\hdashline\n 9 & 9,15,18 & 14 \\\\\n \\hdashline\n 10 & 12, 15,18 & 15 \\\\\n \\hdashline\n\\end{array}"B.
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{120}{10}=12=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{1470}{10}-(12)^2=3= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{3}\\approx1.73205"
Comments
Leave a comment