Question #340681

Consider a population with values 1, 2, 3, 5, 7, 11



a. Find the population mean



b. Find the population variance



c. Find the population standard deviation.



d. Find all possible samples of size 4 which can be drawn with replacement from this



population



e. Find the mean of the sampling distribution.



f. Find the variance of the sampling distribution of means.



g. Find the standard deviation of the sampling distribution of means

1
Expert's answer
2022-05-15T17:26:19-0400

We have population values 1,2,3,5,7,11, population size N=6 and sample size n=4.

a.Mean of population (μ)(\mu) = 1+2+3+5+7+116=296\dfrac{1+2+3+5+7+11}{6}=\dfrac{29}{6}

b. Variance of population 


σ2=Σ(xixˉ)2N=16((1296)2+(2296)2\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{1}{6}((1-\dfrac{29}{6})^2+(2-\dfrac{29}{6})^2


+(3296)2+(5296)2+(7296)2+(3-\dfrac{29}{6})^2+(5-\dfrac{29}{6})^2+(7-\dfrac{29}{6})^2

+(11296)2)=4133611.4722+(11-\dfrac{29}{6})^2)=\dfrac{413}{36}\approx11.4722

c.

σ=σ2=41336=41363.3871\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{413}{36}}=\dfrac{\sqrt{413}}{6}\approx3.3871

d. The number of possible samples which can be drawn with replacement is Nn=64=1296.N^n=6^4=1296.


e. Mean of sampling distribution 

μXˉ=E(Xˉ)=μ=296\mu_{\bar{X}}=E(\bar{X})=\mu=\dfrac{29}{6}


f. The variance of sampling distribution 

Var(Xˉ)=σXˉ2=σ2n=41336(4)=413144Var(\bar{X})=\sigma^2_{\bar{X}}=\dfrac{\sigma^2}{n}=\dfrac{413}{36(4)}=\dfrac{413}{144}


g.


σXˉ=σXˉ2=413144=413121.6935\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{\dfrac{413}{144}}=\dfrac{\sqrt{413}}{12}\approx1.6935





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS