Suppose a population consists of the number 97,89,98,93,95,97,97,90,60,94 construct a sampling distribution of all possible samples of size 3 from the population.
We have population values 97,89,98,93,95,97,97,90,60,94, population size N=10 and sample size n=3.
Mean of population
"(\\mu)=\\dfrac{1}{10}(97+89+98+93+95+97""+97+90+60+94)=91"
Variance of population
"+16+36+36+1+961+9)=115.2"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{115.2}\\approx10.7331"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{10}C_3=120."
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\mu=91"
The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""=\\dfrac{115.2}{3}(\\dfrac{10-3}{10-1})=\\dfrac{89.6}{3}""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{89.6}{3}}\\approx5.4650"
Comments
Leave a comment