Question #340442

Suppose a population consists of the number 97,89,98,93,95,97,97,90,60,94 construct a sampling distribution of all possible samples of size 3 from the population.


1
Expert's answer
2022-05-16T11:55:04-0400

We have population values 97,89,98,93,95,97,97,90,60,94, population size N=10 and sample size n=3.

Mean of population 

(μ)=110(97+89+98+93+95+97(\mu)=\dfrac{1}{10}(97+89+98+93+95+97

 

+97+90+60+94)=91+97+90+60+94)=91

Variance of population 


σ2=Σ(xixˉ)2N=110(36+4+49+4\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{1}{10}(36+4+49+4


+16+36+36+1+961+9)=115.2+16+36+36+1+961+9)=115.2

σ=σ2=115.210.7331\sigma=\sqrt{\sigma^2}=\sqrt{115.2}\approx10.7331


The number of possible samples which can be drawn without replacement is NCn=10C3=120.^{N}C_n=^{10}C_3=120.

Mean of sampling distribution 

μXˉ=E(Xˉ)=μ=91\mu_{\bar{X}}=E(\bar{X})=\mu=91


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=σ2n(NnN1)Var(\bar{X})=\sigma^2_{\bar{X}}=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=115.23(103101)=89.63=\dfrac{115.2}{3}(\dfrac{10-3}{10-1})=\dfrac{89.6}{3}

σXˉ=89.635.4650\sigma_{\bar{X}}=\sqrt{\dfrac{89.6}{3}}\approx5.4650

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS