Fit the parabola is Y=a X^2+bX+c for the data x: 1, 3, 4 , 6 ,8 ,9, 11, 14 and y: 1,2, 4, 4, 5, 7, 8, 9.
"\\bar{Y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nY_i=\\dfrac{40}{8}=5"
"\\bar{X^2}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nX_i^2=\\dfrac{524}{8}=65.5"
"SS_{XX}=\\displaystyle\\sum_{i=1}^nX_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)^2"
"=524-\\dfrac{56^2}{8}=132"
"SS_{XY}=\\displaystyle\\sum_{i=1}^nX_iY_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\sum_{i=1}^nY_i)"
"=364-\\dfrac{56(40)}{8}=84"
"SS_{XX^2}=\\displaystyle\\sum_{i=1}^nX_i^3-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\displaystyle\\sum_{i=1}^nX_i^2)"
"=5624-\\dfrac{56(524)}{8}=1956"
"SS_{X^2X^2}=\\displaystyle\\sum_{i=1}^nX_i^4-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i^2)^2"
"=65348-\\dfrac{(524)^2}{8}=31026"
"SS_{X^2Y}=\\displaystyle\\sum_{i=1}^nX_i^2Y_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i^2)(\\displaystyle\\sum_{i=1}^nY_i)"
"=3846-\\dfrac{524(40)}{8}=1226"
"b=\\dfrac{84(31026)-1226(1956)}{132(31026)-(1956)^2}=0.772286"
"a=\\dfrac{1226(132)-84(1956)}{132(31026)-(1956)^2}=-0.009173"
"c=5-0.772286(7)+0.009173(65.5)=0.194830"
"\\hat{y}=-0.009173x^2+0.772286x+0.194830"
Comments
Leave a comment