Answer to Question #340138 in Statistics and Probability for Maneo

Question #340138

In an experiment of rolling a balanced die twice, let X be the maximum of the two numbers obtained.

1) What are the possible values of X?

2) Write down the sample space

3) Wat is the probability function for X?

4) Determine and sketch the probability mass function of X.

5) Find the expected value of X.

6) Find the variance of X.



1
Expert's answer
2022-05-24T17:52:06-0400

123456112345622234563333456444445655555566666666\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hdashline 2 & 2 & 2 & 3 & 4 & 5 & 6 \\ \hdashline 3 & 3 & 3 & 3 & 4 & 5 & 6 \\ \hdashline 4 & 4 & 4 & 4 & 4 & 5 & 6 \\ \hdashline 5 & 5 & 5 & 5 & 5 & 5 & 6 \\ \hdashline 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ \hdashline \end{array}

1) The possible values of XX are 1,2,3,4,5,1, 2, 3, 4, 5, and 6.6.


2)

S={1,2,3,4,5,6}S=\{1,2,3,4,5,6\}

3)


x123456p(x)1/363/365/367/369/3611/36\def\arraystretch{1.5} \begin{array}{c:c} x & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p(x) & 1/36 & 3/36 & 5/36 & 7/36 & 9/36 & 11/36 \\ \end{array}

4)


f(x)={1/36 x=13/36 x=25/36 x=37/36 x=49/36 x=511/36 x=6f(x) = \begin{cases} 1/36 &\ x=1 \\ 3/36&\ x=2 \\ 5/36&\ x=3 \\ 7/36&\ x=4 \\ 9/36&\ x=5 \\ 11/36&\ x=6 \\ \end{cases}



5)


μ=E(X)=136(1)+336(2)+536(3)\mu=E(X)=\dfrac{1}{36}(1)+\dfrac{3}{36}(2)+\dfrac{5}{36}(3)

+736(4)+936(5)+1136(6)=16136+\dfrac{7}{36}(4)+\dfrac{9}{36}(5)+\dfrac{11}{36}(6)=\dfrac{161}{36}

6)


E(X2)=136(1)2+336(2)2+536(3)2E(X^2)=\dfrac{1}{36}(1)^2+\dfrac{3}{36}(2)^2+\dfrac{5}{36}(3)^2


+736(4)2+936(5)2+1136(6)2=79136+\dfrac{7}{36}(4)^2+\dfrac{9}{36}(5)^2+\dfrac{11}{36}(6)^2=\dfrac{791}{36}


Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=79136(16136)2=25551296=\dfrac{791}{36}-(\dfrac{161}{36})^2=\dfrac{2555}{1296}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment