Consider the population of the values (1,2,3,4).
A. List all the possible samples of size 2 with replacement
B. Compute the mean of each sample.
C. Identify the probability of each sample.
D. Compute the mean of the sampling distribution of the means.
A.We have population values 1,2,3,4, population size N=5 and sample size n=2.
The number of possible samples which can be drawn with replacement is
"N^n=4^2=16."
"S=\\{(1,1), (1,2), (1,3), (1,4),""(2,1), (2,2), (2,3), (2,4),"
"(3,1), (3,2), (3,3), (3,4),"
"(4,1), (4,2), (4,3), (4,4)\\}"
B.
C.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f(\\bar{X}) &\\bar{X} f(\\bar{X}) & \\bar{X}^2f(\\bar{X})\n\\\\ \\hline\n 2\/2 & 1\/16 & 2\/32 & 4\/64 \\\\\n \\hdashline\n 3\/2 & 2\/16 & 6\/32 & 18\/64 \\\\\n \\hdashline\n 4\/2 & 3\/16 & 12\/32 & 48\/64 \\\\\n \\hdashline\n 5\/2 & 4\/16 & 20\/32 & 100\/64 \\\\\n \\hdashline\n 6\/2 & 3\/16 & 18\/32 & 108\/64 \\\\\n \\hdashline\n 7\/2 & 2\/16 & 14\/32 & 98\/64 \\\\\n \\hdashline\n 8\/2 & 1\/16 & 8\/32 & 64\/64 \\\\\n \\hdashline\n\\end{array}"D.
Mean of population
"\\mu=\\dfrac{1+2+3+4}{4}=2.5"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=2.5=\\mu"Variance of population
"+2.25)=1.25"
The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{440}{64}-(2.5)^2=0.625= \\dfrac{\\sigma^2}{n}"
Comments
Leave a comment