Denote by T a random variable that has an exponential distribution. Its probability density function is: f(x)=λe−λx,x≥0. f(x)=0 for x<0. λ=6.9 is a parameter of the distribution. a. The aim is to find the probability: P(41<T<21). We get: P(41<T<21)=∫41216.9e−6.9xdx=−e−6.9x∣4121=e−6.9⋅41−e−6.9⋅21≈0.1464.
b. The aim is to find P(T<1). We get: P(T<1)=∫016.9e−6.9xdx=−e−6.9x∣01=1−e−6.9≈0.9990
c. The aim is to find P(T<43∣T>41). Using the definition of the conditional probability, we have: P(T<43∣T>41)=P(T>41)P(41<T<43). Compute both probabilities in the latter formula: P(41<T<43)=∫41436.9e−6.9xdx=−e−6.9x∣4143=e−6.9⋅41−e−6.9⋅43≈0.1725.
P(T>41)=∫41+∞6.9e−6.9xdx=−e−6.9x∣41+∞≈0.1782.
We get: P(T>41)P(41<T<43)=0.17820.1725≈0.9680.
Answer: a. P(41<T<21)≈0.1464, b. P(T<1)≈0.9990, c. P(T<43∣T>41)≈0.9680. All values are rounded to 4 decimal places.
Comments