The joint probability density of X, Y is
f(x, y) = e −(x + y) xi > 0 i = 1, 2
0 otherwise
Using the change of variable technique, determine the joint distribution of Z = X and W = X + Y
At first, we check that "f(x,y)" is a valid joint probability density. We have to prove that "\\int_0^{+\\infty}\\int_0^{+\\infty}e^{-(x+y)}dxdy=1". Compute the integral at the left side: "\\int_0^{+\\infty}\\int_0^{+\\infty}e^{-(x+y)}dxdy=\\int_{0}^{+\\infty}-e^{-(x+y)}|_0^{+\\\n\\infty}dy=\\int_{0}^{+\\infty}e^{-y}dy=-e^{-y}|_0^{+\\infty}=1".
Thus, it is the valid distribution. In order to find the joint distribution, consider the probability: "P\\{X<z,X+Y<w\\}". In case "z<0" or "w<0", "P\\{X<z,X+Y<w\\}=0". In case "z>0,w>0", we get: "P\\{Z<z,X+Y<w\\}=\\iint_{x<z,x+y<w}f(x,y)dxdy=\\int_0^{min(z,w)}(\\int_0^{w-x}e^{-(x+y)}dy)dx=\\int_0^{min(z,w)}-e^{-(x+y)}|_0^{w-x}dx=\\int_0^{min(z,w)}(e^{-x}-e^{-w})dx=-e^{-x}|_0^{min(z,w)}-min(z,w)e^{-w}=1-e^{-min(z,w)}-min(z,w)e^{-w}."
Thus, in case "z<w", we get: "P\\{Z<z,X+Y<w\\}=1-e^{-z}-ze^{-w}". For "z>w" we have: "P\\{Z<z,X+Y<w\\}=1-e^{-w}-we^{-w}". Denote "F(z,w)=P\\{Z<z,X+Y<w\\}"
The joint probability density is: "p(z,w)=\\frac{\\partial^2F(z,w)}{\\partial z\\partial w}=e^{-w}", "z<w", "z>0,w>0".
Answer: The joint probability density function is: "p(z,w)=e^{-w}", "z<w", "z>0,w>0."
Comments
Leave a comment