1) The jdf of the random variables X, Y is given as
f(x, y) = { 2 /5 (2x + 3y), 0 < x < 1, 0 < y < 1
0, elsewhere
find Pr [ 1 /3 < X < 2 /3 |y > 3 /4 ]
1). Since it is not clear how the joint probability function looks like, consider two cases:
a). "f(x,y)=\\frac{2}{5(2x+3y)}". The following condition must be satisfied: "\\iint_{\\mathbb{R}^2}f(x,y)dydx=1". We receive: "\\frac25\\int_0^1\\int_0^1\\frac{1}{2x+3y}dydx=\\frac25\\int_0^1\\frac13\\ln(2x+3y)|_0^1dx=\\frac{2}{15}\\int_0^1(\\ln(2x+3)-ln(2x))dy." Consider separately integral: "\\int\\ln(t)dt=t\\,\\ln(t)-\\int dt=t\\ln(t)-t+C". Using the latter, we get: "\\frac25\\int_0^1\\int_0^1\\frac{1}{2x+3y}dydx=\\frac{2}{15}\\int_0^1(\\ln(2x+3)-ln(2x))dx=\\frac{2}{15}\\left(\\frac12(2x+3)\\ln(2x+3)-\\frac32-x\\,\\ln(2x)\\right)|_0^1\\approx0.224"
Thus, it is not a valid joint probability function.
b). Consider the function: "f(x,y)=\\frac25(2x+3y)". We will get: "\\frac25\\int_0^1\\int_0^1(2x+3y)dydx=\\frac25\\int_0^1(2xy+\\frac32y^2)|_0^1dx=\\frac25\\int_0^1(2x+\\frac32)dx=\\frac25(x^2+\\frac32x)|_0^1=1". Thus, it is a valid joint probability function.
Remind the formula: "P(A|B)=\\frac{P(A\\cap B)}{P(B)}". From the latter we get: "P(\\frac13<X<\\frac23|Y>\\frac34)=\\frac{P(\\frac13<X<\\frac23,Y>\\frac34)}{P(Y>\\frac34)}".
Consider separately each probability in the last formula: "P(\\frac13<X<\\frac23,Y>\\frac34)=\\int_{\\frac13}^{\\frac23}\\int_{\\frac34}^{1}\\frac25(2x+3y)dydx=\\frac25\\int_{\\frac13}^{\\frac23}(2xy+\\frac32y^2)_{\\frac34}^{1}dx=\\frac25\\int_{\\frac13}^{\\frac23}(2x+\\frac32-\\frac32x-\\frac{27}{32})dx=\\frac25\\int_{\\frac13}^{\\frac23}(\\frac12x+\\frac{21}{32})dx=\\frac25(\\frac14x^2+\\frac{21}{32}x)_{\\frac13}^{\\frac23}=\\frac{29}{240}"
"P(Y>\\frac34)=\\frac25\\int_0^1\\int_{\\frac34}^1(2x+3y)dydx=\\frac25\\int_0^1(2xy+\\frac32y^2)|_{\\frac34}^1dx=\\frac25\\int_0^1(2x+\\frac32-\\frac32x-\\frac{27}{32})dx=\\frac25\\int_0^1(\\frac12x+\\frac{21}{32})dx=\\frac25\\left(\\frac{1}{4}x^2+\\frac{21}{32}x\\right)|_0^1=\\frac25\\left(\\frac14+\\frac{21}{32}\\right)=\\frac{29}{80}"
Thus, the probability is the following: "P(\\frac13<X<\\frac23|Y>\\frac34)=\\frac{29}{240}\\cdot\\frac{80}{29}=\\frac13."
Answer: "P(\\frac13<X<\\frac23,Y>\\frac34)=\\frac13"
Comments
Leave a comment