Answer to Question #338484 in Statistics and Probability for Calvin

Question #338484

Let X, Y be a independent and identically distributed random variables, each having Poisson distribution with rate parameter λ. Find the probability generating function of W = X + Y and hence the mean and variance of W


1
Expert's answer
2022-05-12T18:22:18-0400

Suppose that random variables XX and YY have Poisson distribution with parameter λ\lambda. It means that their densities have the following form: P(X=k)=λkeλk!,P(X=k)=\frac{\lambda^ke^{-\lambda}}{k!}, P(Y=n)=λneλn!P(Y=n)=\frac{\lambda^ne^{-\lambda}}{n!} , where k,n=0,1,2,...k,n=0,1,2,.... Compute the density for WW: P(W=n)=l=0nP(X=l)P(Y=nl)=l=0nλne2λl!(nl)!=1n!e2λl=0nCnlλnP(W=n)=\sum_{l=0}^nP(X=l)P(Y=n-l)=\sum_{l=0}^n\frac{\lambda^{n}e^{-2\lambda}}{l!(n-l)!}=\frac{1}{n!}e^{-2\lambda}\sum_{l=0}^nC_n^l\lambda^n, where Cnl=n!l!(nl)!C_n^l=\frac{n!}{l!(n-l)!}. We use the binomial formula and get: P(W=n)=2λe2λn!P(W=n)=\frac{2\lambda e^{-2\lambda}}{n!}. Thus, WW also has a Poisson distribution with parameter: μ=2λ\mu=2\lambda. It is a known fact. We remind that the probability generating function is defined by: G(z)=E[zW]=k=0+P(W=k)zk=k=0+μkeμk!zk=eμk=0+(μz)kk!=eμeμz=eμ(z1)G(z)=E[z^W]=\sum_{k=0}^{+\infty}P(W=k)z^k=\sum_{k=0}^{+\infty}\frac{\mu^ke^{-\mu}}{k!}z^k=e^{-\mu}\sum_{k=0}^{+\infty}\frac{(\mu z)^k}{k!}=e^{-\mu}e^{\mu z}=e^{\mu(z-1)}

We used the Taylor series for eμze^{\mu z}. We received that the probability generating function has the form: G(z)=eμ(z1)G(z)=e^{\mu(z-1)}. It is also a known fact. After setting: z=etz=e^t we receive: M(t)=eμ(et1)M(t)=e^{\mu(e^t-1)}. It is a moment-generating function. We remind a known fact that M(n)(0)=E[Wn]M^{(n)}(0)=E[W^n]. I.e., nn-th derivative (n=0,1,2,...n=0,1,2,... ) of M(t)M(t) provides the expectation E[Wn].E[W^n]. We receive: M(t)=μeteμ(et1)M'(t)=\mu e^te^{\mu(e^t-1)}, M(t)=μeteμ(et1)+(μet)2eμ(et1)M''(t)=\mu e^{t} e^{\mu(e^t-1)}+(\mu e^t)^2e^{\mu(e^t-1)}.

Thus, E[W]=M(0)=μE[W]=M'(0)=\mu, E[W2]=M(0)=μ+μ2E[W^2]=M''(0)=\mu+\mu^2. The variance is: Var[W]=E[W2](E[W)]2=μ+μ2μ2=μVar[W]=E[W^2]-(E[W)]^2=\mu+\mu^2-\mu^2=\mu.

Answer: the probability generating function of WW is: G(z)=eμ(z1)G(z)=e^{\mu(z-1)}. The mean is: E[W]=μ.E[W]=\mu. The variance is: Var[W]=μ.Var[W]=\mu.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment