The joint density function of the random variables X, Y is given as
f(x, y) = { 0.4 (2x + 3y), 0 < x < 1, 0 < y< 1
0, elsewhere
1)Determine P [ 0.33 < X < 2/3 |Y > 3 /4 ]
1). Check, whether "f(x,y)" is a valid joint density function: "\\int_0^1\\int_0^10.4(2x+3y)dydx=0.4\\int_0^1(2xy+\\frac32y^2)|_0^1dx=0.4\\int_0^1(2x+\\frac32)dx=0.4(x^2+\\frac32x)|_0^1=1"Thus, it is a valid joint density function.
Remind the formula: "P(A|B)=\\frac{P(A\\cap B)}{P(B)}". From the latter we get: "P(0.33<X<\\frac23|Y>\\frac34)=\\frac{P(0.33<X<\\frac23,Y>\\frac34)}{P(Y>\\frac34)}".
Consider separately each probability in the last formula: "P(0.33<X<\\frac23,Y>\\frac34)=0.4\\int_{0.33}^{\\frac23}\\int_{\\frac34}^{1}(2x+3y)dydx=0.4\\int_{0.33}^{\\frac23}(2xy+\\frac32y^2)_{\\frac34}^{1}dx=0.4\\int_{0.33}^{\\frac23}(2x+\\frac32-\\frac32x-\\frac{27}{32})dx=0.4\\int_{0.33}^{\\frac23}(\\frac12x+\\frac{21}{32})dx=0.4(\\frac14x^2+\\frac{21}{32}x)_{0.33}^{\\frac23}\\approx0.1219"
The latter value is rounded to "4" decimal places.
"P(Y>\\frac34)=0.4\\int_0^1\\int_{\\frac34}^1(2x+3y)dydx=0.4\\int_0^1(2xy+\\frac32y^2)|_{\\frac34}^1dx=0.4\\int_0^1(2x+\\frac32-\\frac32x-\\frac{27}{32})dx=0.4\\int_0^1(\\frac12x+\\frac{21}{32})dx=0.4\\left(\\frac{1}{4}x^2+\\frac{21}{32}x\\right)|_0^1=0.4\\left(\\frac14+\\frac{21}{32}\\right)=\\frac{29}{80}"
Thus, the probability is the following: "P(0.33<X<\\frac23|Y>\\frac34)\\approx0.1219\\cdot\\frac{80}{29}\\approx0.336"
Answer: "P(\\frac13<X<\\frac23,Y>\\frac34)\\approx0.336" (it is rounded to "3" decimal places)
Comments
Leave a comment