Answer to Question #338483 in Statistics and Probability for ken

Question #338483

The joint density function of the random variables X, Y is given as

f(x, y) = { 0.4 (2x + 3y), 0 < x < 1, 0 < y< 1

0, elsewhere

1)Determine P [ 0.33 < X < 2/3 |Y > 3 /4 ]


1
Expert's answer
2022-05-12T09:22:22-0400

1). Check, whether f(x,y)f(x,y) is a valid joint density function: 01010.4(2x+3y)dydx=0.401(2xy+32y2)01dx=0.401(2x+32)dx=0.4(x2+32x)01=1\int_0^1\int_0^10.4(2x+3y)dydx=0.4\int_0^1(2xy+\frac32y^2)|_0^1dx=0.4\int_0^1(2x+\frac32)dx=0.4(x^2+\frac32x)|_0^1=1Thus, it is a valid joint density function.

Remind the formula: P(AB)=P(AB)P(B)P(A|B)=\frac{P(A\cap B)}{P(B)}. From the latter we get: P(0.33<X<23Y>34)=P(0.33<X<23,Y>34)P(Y>34)P(0.33<X<\frac23|Y>\frac34)=\frac{P(0.33<X<\frac23,Y>\frac34)}{P(Y>\frac34)}.

Consider separately each probability in the last formula: P(0.33<X<23,Y>34)=0.40.3323341(2x+3y)dydx=0.40.3323(2xy+32y2)341dx=0.40.3323(2x+3232x2732)dx=0.40.3323(12x+2132)dx=0.4(14x2+2132x)0.33230.1219P(0.33<X<\frac23,Y>\frac34)=0.4\int_{0.33}^{\frac23}\int_{\frac34}^{1}(2x+3y)dydx=0.4\int_{0.33}^{\frac23}(2xy+\frac32y^2)_{\frac34}^{1}dx=0.4\int_{0.33}^{\frac23}(2x+\frac32-\frac32x-\frac{27}{32})dx=0.4\int_{0.33}^{\frac23}(\frac12x+\frac{21}{32})dx=0.4(\frac14x^2+\frac{21}{32}x)_{0.33}^{\frac23}\approx0.1219

The latter value is rounded to 44 decimal places.

P(Y>34)=0.401341(2x+3y)dydx=0.401(2xy+32y2)341dx=0.401(2x+3232x2732)dx=0.401(12x+2132)dx=0.4(14x2+2132x)01=0.4(14+2132)=2980P(Y>\frac34)=0.4\int_0^1\int_{\frac34}^1(2x+3y)dydx=0.4\int_0^1(2xy+\frac32y^2)|_{\frac34}^1dx=0.4\int_0^1(2x+\frac32-\frac32x-\frac{27}{32})dx=0.4\int_0^1(\frac12x+\frac{21}{32})dx=0.4\left(\frac{1}{4}x^2+\frac{21}{32}x\right)|_0^1=0.4\left(\frac14+\frac{21}{32}\right)=\frac{29}{80}

Thus, the probability is the following: P(0.33<X<23Y>34)0.121980290.336P(0.33<X<\frac23|Y>\frac34)\approx0.1219\cdot\frac{80}{29}\approx0.336

Answer: P(13<X<23,Y>34)0.336P(\frac13<X<\frac23,Y>\frac34)\approx0.336 (it is rounded to 33 decimal places)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment