1). Check, whether f(x,y) is a valid joint density function: ∫01∫010.4(2x+3y)dydx=0.4∫01(2xy+23y2)∣01dx=0.4∫01(2x+23)dx=0.4(x2+23x)∣01=1Thus, it is a valid joint density function.
Remind the formula: P(A∣B)=P(B)P(A∩B). From the latter we get: P(0.33<X<32∣Y>43)=P(Y>43)P(0.33<X<32,Y>43).
Consider separately each probability in the last formula: P(0.33<X<32,Y>43)=0.4∫0.3332∫431(2x+3y)dydx=0.4∫0.3332(2xy+23y2)431dx=0.4∫0.3332(2x+23−23x−3227)dx=0.4∫0.3332(21x+3221)dx=0.4(41x2+3221x)0.3332≈0.1219
The latter value is rounded to 4 decimal places.
P(Y>43)=0.4∫01∫431(2x+3y)dydx=0.4∫01(2xy+23y2)∣431dx=0.4∫01(2x+23−23x−3227)dx=0.4∫01(21x+3221)dx=0.4(41x2+3221x)∣01=0.4(41+3221)=8029
Thus, the probability is the following: P(0.33<X<32∣Y>43)≈0.1219⋅2980≈0.336
Answer: P(31<X<32,Y>43)≈0.336 (it is rounded to 3 decimal places)
Comments
Leave a comment