If P (A|B) = 0.5, P (A) = 0.45 and P (B) = ?
Bayes' theorem:
P(A∣B)=P(B∣A)P(A)P(B)P(A|B)=\frac{P(B|A)P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)P(A)
then:
P(B)=P(B∣A)P(A)P(A∣B)=0.45P(B∣A)0.5=0.9P(B∣A)P(B)=\frac{P(B|A)P(A)}{P(A|B)}=\frac{0.45P(B|A)}{0.5}=0.9P(B|A)P(B)=P(A∣B)P(B∣A)P(A)=0.50.45P(B∣A)=0.9P(B∣A)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments