Question #336503

A random sample is drawn from a population of known standard deviation 11.3. Construct 90%confidence interval for the population mean based on the information given (not all of the information given need be used).



a. n=36, x¯=105.2, s=11.2n=36, x¯=105.2, s=11.2




b. n=100, x¯=105.2, s=11.2n=100, x¯=105.2, s=11.2

1
Expert's answer
2022-05-03T13:31:18-0400

The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})

a) The critical value for α=0.10,df=n1=35\alpha = 0.10, df=n-1=35 degrees of freedom is tc=z1α/2;n1=1.689572.t_c=z_{1−α/2;n−1}=1.689572.

CI=(105.21.689572×11.236,CI=(105.2-1.689572\times\dfrac{11.2}{\sqrt{36}},

105.2+1.689572×11.236)105.2+1.689572\times\dfrac{11.2}{\sqrt{36}})

=(102.046,108.354)=(102.046,108.354)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 102.046<μ<108.354,102.046< \mu < 108.354, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (102.046,108.354).(102.046,108.354).


b) The critical value for α=0.10,df=n1=99\alpha = 0.10, df=n-1=99 degrees of freedom is tc=z1α/2;n1=1.660391.t_c=z_{1−α/2;n−1}= 1.660391.

CI=(105.21.660391×11.2100,CI=(105.2- 1.660391\times\dfrac{11.2}{\sqrt{100}},

105.2+1.660391×11.2100)105.2+ 1.660391\times\dfrac{11.2}{\sqrt{100}})

=(103.340,107.060)=(103.340,107.060)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 103.340<μ<107.060,103.340< \mu < 107.060, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (103.340,107.060).(103.340,107.060).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS