We have population values 7, 10, 14, 17, 20, population size N=5 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 7 + 10 + 14 + 17 + 20 5 = 13.6 \dfrac{7+10+14+17+20}{5}=13.6 5 7 + 10 + 14 + 17 + 20 = 13.6
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 N = 109.2 5 = 21.84 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{109.2}{5}=21.84 σ 2 = N Σ ( x i − x ˉ ) 2 = 5 109.2 = 21.84
σ = σ 2 = 21.84 ≈ 4.6733 \sigma=\sqrt{\sigma^2}=\sqrt{21.84}\approx4.6733 σ = σ 2 = 21.84 ≈ 4.6733
The number of possible samples which can be drawn without replacement is N C n = 5 C 3 = 10. ^{N}C_n=^{5}C_3=10. N C n = 5 C 3 = 10.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 7 , 10 , 14 31 / 3 2 7 , 10 , 17 34 / 3 3 7 , 10 , 20 37 / 3 4 7 , 14 , 17 38 / 3 5 7 , 14 , 20 41 / 3 6 7 , 17 , 20 44 / 3 7 10 , 14 , 17 41 / 3 8 10 , 14 , 20 44 / 3 9 10 , 17 , 20 47 / 3 10 14 , 17 , 20 51 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 7,10,14 & 31/3 \\
\hdashline
2 & 7, 10, 17 & 34/3 \\
\hdashline
3 & 7,10,20 & 37/3\\
\hdashline
4 & 7,14,17 & 38/3 \\
\hdashline
5 & 7,14,20 & 41/3 \\
\hdashline
6 & 7,17,20 & 44/3 \\
\hdashline
7 & 10,14,17 & 41/3 \\
\hdashline
8 & 10,14,20 & 44/3 \\
\hdashline
9 & 10,17,20 & 47/3 \\
\hdashline
10 & 14,17,20 & 51/3 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 7 , 10 , 14 7 , 10 , 17 7 , 10 , 20 7 , 14 , 17 7 , 14 , 20 7 , 17 , 20 10 , 14 , 17 10 , 14 , 20 10 , 17 , 20 14 , 17 , 20 S am pl e m e an ( x ˉ ) 31/3 34/3 37/3 38/3 41/3 44/3 41/3 44/3 47/3 51/3
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 31 / 3 1 / 10 31 / 30 961 / 90 34 / 3 1 / 10 34 / 30 1156 / 90 37 / 3 1 / 10 37 / 30 1369 / 90 38 / 3 1 / 10 38 / 30 1444 / 90 41 / 3 2 / 10 82 / 30 3362 / 90 44 / 3 2 / 10 88 / 30 3872 / 90 47 / 3 1 / 10 47 / 30 2209 / 90 51 / 3 1 / 10 51 / 30 2601 / 90 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X})
\\ \hline
31/3 & 1/10 & 31/30 & 961/90 \\
\hdashline
34/3 & 1/10 & 34/30 & 1156/90 \\
\hdashline
37/3 & 1/10 & 37/30 & 1369/90 \\
\hdashline
38/3 & 1/10 & 38/30 & 1444/90 \\
\hdashline
41/3 & 2/10 & 82/30 & 3362/90 \\
\hdashline
44/3 & 2/10 & 88/30 & 3872/90 \\
\hdashline
47/3 & 1/10 & 47/30 & 2209/90 \\
\hdashline
51/3 & 1/10 & 51/30 & 2601/90 \\
\hdashline
\end{array} X ˉ 31/3 34/3 37/3 38/3 41/3 44/3 47/3 51/3 f ( X ˉ ) 1/10 1/10 1/10 1/10 2/10 2/10 1/10 1/10 X ˉ f ( X ˉ ) 31/30 34/30 37/30 38/30 82/30 88/30 47/30 51/30 X ˉ 2 f ( X ˉ ) 961/90 1156/90 1369/90 1444/90 3362/90 3872/90 2209/90 2601/90
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 13.6 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=13.6=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 13.6 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 16974 90 − ( 13.6 ) 2 = 327.6 90 = 3.64 = σ 2 n ( N − n N − 1 ) =\dfrac{16974}{90}-(13.6)^2=\dfrac{327.6}{90}=3.64= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 90 16974 − ( 13.6 ) 2 = 90 327.6 = 3.64 = n σ 2 ( N − 1 N − n )
σ X ˉ = 3.64 ≈ 1.9079 \sigma_{\bar{X}}=\sqrt{3.64}\approx1.9079 σ X ˉ = 3.64 ≈ 1.9079
Comments