Question #336443

Find the mean of the set 7 10 14 17 20 of data and construct a sampling distribution by selecting 3 samples at a time

1
Expert's answer
2022-05-03T11:58:27-0400

We have population values 7, 10, 14, 17, 20, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 7+10+14+17+205=13.6\dfrac{7+10+14+17+20}{5}=13.6

Variance of population 


σ2=Σ(xixˉ)2N=109.25=21.84\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{109.2}{5}=21.84


σ=σ2=21.844.6733\sigma=\sqrt{\sigma^2}=\sqrt{21.84}\approx4.6733


The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)17,10,1431/327,10,1734/337,10,2037/347,14,1738/357,14,2041/367,17,2044/3710,14,1741/3810,14,2044/3910,17,2047/31014,17,2051/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 7,10,14 & 31/3 \\ \hdashline 2 & 7, 10, 17 & 34/3 \\ \hdashline 3 & 7,10,20 & 37/3\\ \hdashline 4 & 7,14,17 & 38/3 \\ \hdashline 5 & 7,14,20 & 41/3 \\ \hdashline 6 & 7,17,20 & 44/3 \\ \hdashline 7 & 10,14,17 & 41/3 \\ \hdashline 8 & 10,14,20 & 44/3 \\ \hdashline 9 & 10,17,20 & 47/3 \\ \hdashline 10 & 14,17,20 & 51/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)31/31/1031/30961/9034/31/1034/301156/9037/31/1037/301369/9038/31/1038/301444/9041/32/1082/303362/9044/32/1088/303872/9047/31/1047/302209/9051/31/1051/302601/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 31/3 & 1/10 & 31/30 & 961/90 \\ \hdashline 34/3 & 1/10 & 34/30 & 1156/90 \\ \hdashline 37/3 & 1/10 & 37/30 & 1369/90 \\ \hdashline 38/3 & 1/10 & 38/30 & 1444/90 \\ \hdashline 41/3 & 2/10 & 82/30 & 3362/90 \\ \hdashline 44/3 & 2/10 & 88/30 & 3872/90 \\ \hdashline 47/3 & 1/10 & 47/30 & 2209/90 \\ \hdashline 51/3 & 1/10 & 51/30 & 2601/90 \\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=13.6=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=13.6=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=1697490(13.6)2=327.690=3.64=σ2n(NnN1)=\dfrac{16974}{90}-(13.6)^2=\dfrac{327.6}{90}=3.64= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=3.641.9079\sigma_{\bar{X}}=\sqrt{3.64}\approx1.9079



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS