[[ Set B ]]
Round all answers to the nearest hundredths.
We have population values 3,5,7,9, population size N=4 and sample size n=2.
Mean of population "(\\mu)" =
"\\dfrac{3+5+7+9}{4}=6"Variance of population
"=\\dfrac{9+1+1+9}{4}=5"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{5}\\approx2.24"
The number of possible samples which can be drawn without replacement is "2^4=16."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 3,3 & 3 \\\\\n \\hdashline\n 2 & 3,5 & 4 \\\\\n \\hdashline\n 3 & 3,7 & 5 \\\\\n \\hdashline\n 4 & 3,9 & 6 \\\\\n \\hdashline\n 5 & 5,3 & 4 \\\\\n \\hdashline\n 6 & 5,5 & 5 \\\\\n \\hdashline\n 7 & 5,7 & 6 \\\\\n \\hdashline\n 8 & 5,9 & 7 \\\\\n \\hdashline\n 9 & 7,3 & 5 \\\\\n \\hdashline\n 10 & 7,5 & 6 \\\\\n \\hdashline\n 11 & 7,7 & 7 \\\\\n \\hdashline\n 12 & 7,9 & 8 \\\\\n \\hdashline\n 13 & 9,3 & 6 \\\\\n \\hdashline\n 14 & 9,5 & 7 \\\\\n \\hdashline\n 15 & 9,7 & 8 \\\\\n \\hdashline\n 16 & 9,9 & 9 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=6=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{616}{16}-(6)^2=\\dfrac{5}{2}=2.5= \\dfrac{\\sigma^2}{n}""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{5}{2}}\\approx1.58"
Comments
Leave a comment