We have population values 3,5,7,9, population size N=4 and sample size n=2.
Mean of population (μ) =
43+5+7+9=6
Variance of population
σ2=nΣ(xi−xˉ)2
=49+1+1+9=5
σ=σ2=5≈2.24 The number of possible samples which can be drawn without replacement is 24=16.
no12345678910111213141516Sample3,33,53,73,95,35,55,75,97,37,57,77,99,39,59,79,9Samplemean (xˉ)3456456756786789
Xˉ3456789f(Xˉ)1/162/163/164/163/162/161/16Xˉf(Xˉ)3/168/1615/1624/1621/1616/169/16Xˉ2f(Xˉ)9/1632/1675/16144/16147/16128/1681/16
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=6=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=16616−(6)2=25=2.5=nσ2
σXˉ=25≈1.58
Comments