Question #335912

(3,5,7,9).(3,5,7,9).


[[ Set B ]]

  1. Find ALL possible samples of size 2 which can be drawn with replacement from the population.
  2. Solve for the mean μ
  3. x
  4. μx of the sampling distribution of means.
  5. Solve for the variance σ
  6. x
  7. 2
  8. σx2 of the sampling distribution of means.
  9. Solve for the standard deviation σ
  10. x
  11. σx of the sampling distribution of means.

Round all answers to the nearest hundredths.


1
Expert's answer
2022-05-05T10:10:31-0400

We have population values 3,5,7,9, population size N=4 and sample size n=2.

Mean of population (μ)(\mu) = 

3+5+7+94=6\dfrac{3+5+7+9}{4}=6


Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}


=9+1+1+94=5=\dfrac{9+1+1+9}{4}=5

σ=σ2=52.24\sigma=\sqrt{\sigma^2}=\sqrt{5}\approx2.24

The number of possible samples which can be drawn without replacement is 24=16.2^4=16.

noSampleSamplemean (xˉ)13,3323,5433,7543,9655,3465,5575,7685,9797,35107,56117,77127,98139,36149,57159,78169,99\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 3,3 & 3 \\ \hdashline 2 & 3,5 & 4 \\ \hdashline 3 & 3,7 & 5 \\ \hdashline 4 & 3,9 & 6 \\ \hdashline 5 & 5,3 & 4 \\ \hdashline 6 & 5,5 & 5 \\ \hdashline 7 & 5,7 & 6 \\ \hdashline 8 & 5,9 & 7 \\ \hdashline 9 & 7,3 & 5 \\ \hdashline 10 & 7,5 & 6 \\ \hdashline 11 & 7,7 & 7 \\ \hdashline 12 & 7,9 & 8 \\ \hdashline 13 & 9,3 & 6 \\ \hdashline 14 & 9,5 & 7 \\ \hdashline 15 & 9,7 & 8 \\ \hdashline 16 & 9,9 & 9 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)31/163/169/1642/168/1632/1653/1615/1675/1664/1624/16144/1673/1621/16147/1682/1616/16128/1691/169/1681/16\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) &\bar{X}^2 f(\bar{X})\\ \hline 3 & 1/16 & 3/16 & 9/16\\ \hdashline 4 & 2/16 & 8/16 & 32/16\\ \hdashline 5 & 3/16 & 15/16 & 75/16\\ \hdashline 6 & 4/16 & 24/16 & 144/16\\ \hdashline 7 & 3/16 & 21/16 & 147/16\\ \hdashline 8 & 2/16 & 16/16 & 128/16\\ \hdashline 9 & 1/16 & 9/16 & 81/16\\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=6=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=6=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=61616(6)2=52=2.5=σ2n=\dfrac{616}{16}-(6)^2=\dfrac{5}{2}=2.5= \dfrac{\sigma^2}{n}

σXˉ=521.58\sigma_{\bar{X}}=\sqrt{\dfrac{5}{2}}\approx1.58


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS