We have population values 26, 32, 41, 50, 58, 63, population size N=6 and sample size n=5.
Mean of population ( μ ) (\mu) ( μ ) = 26 + 32 + 41 + 50 + 58 + 63 6 = 45 \dfrac{26+32+41+50+58+63}{6}=45 6 26 + 32 + 41 + 50 + 58 + 63 = 45
The number of possible samples which can be drawn without replacement is N C n = 6 C 5 = 6. ^{N}C_n=^{6}C_5=6. N C n = 6 C 5 = 6.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 26 , 32 , 41 , 50 , 58 207 / 5 2 26 , 32 , 41 , 50 , 63 212 / 5 3 26 , 32 , 41 , 58 , 63 220 / 5 4 26 , 32 , 50 , 58 , 63 229 / 5 5 26 , 41 , 50 , 58 , 63 238 / 5 6 32 , 41 , 50 , 58 , 63 244 / 5 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 26, 32, 41, 50, 58 & 207/5 \\
\hdashline
2 & 26, 32, 41, 50, 63 & 212/5 \\
\hdashline
3 & 26, 32, 41, 58, 63 & 220/5\\
\hdashline
4 & 26, 32, 50, 58, 63 & 229/5 \\
\hdashline
5 & 26, 41, 50, 58, 63 & 238/5 \\
\hdashline
6 & 32, 41, 50, 58, 63 & 244/5 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 S am pl e 26 , 32 , 41 , 50 , 58 26 , 32 , 41 , 50 , 63 26 , 32 , 41 , 58 , 63 26 , 32 , 50 , 58 , 63 26 , 41 , 50 , 58 , 63 32 , 41 , 50 , 58 , 63 S am pl e m e an ( x ˉ ) 207/5 212/5 220/5 229/5 238/5 244/5
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) 207 / 5 1 / 6 207 / 30 212 / 5 1 / 6 212 / 30 220 / 5 1 / 6 220 / 30 229 / 5 1 / 6 229 / 30 238 / 5 1 / 6 238 / 30 244 / 5 1 / 6 244 / 30 \def\arraystretch{1.5}
\begin{array}{c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})
\\ \hline
207/5 & 1/6 & 207/30 \\
\hdashline
212/5 & 1/6 & 212/30 \\
\hdashline
220/5 & 1/6 & 220/30 \\
\hdashline
229/5 & 1/6 & 229/30 \\
\hdashline
238/5 & 1/6 & 238/30 \\
\hdashline
244/5 & 1/6 & 244/30 \\
\hdashline
\end{array} X ˉ 207/5 212/5 220/5 229/5 238/5 244/5 f ( X ˉ ) 1/6 1/6 1/6 1/6 1/6 1/6 X ˉ f ( X ˉ ) 207/30 212/30 220/30 229/30 238/30 244/30
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 45 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=45=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 45 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 304814 150 − ( 45 ) 2 = 1064 150 = σ 2 n ( N − n N − 1 ) =\dfrac{304814}{150}-(45)^2=\dfrac{1064}{150}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 150 304814 − ( 45 ) 2 = 150 1064 = n σ 2 ( N − 1 N − n ) The standard error of the sample means
σ X ˉ = 1064 150 ≈ 2.6633 \sigma_{\bar{X}}=\sqrt{\dfrac{1064}{150}}\approx2.6633 σ X ˉ = 150 1064 ≈ 2.6633
Comments