Let X= the number of corn seed which growed: X∼Bin(n,p).
Given p=0.85,q=1−p=0.15,n=10.
a)
P(X=0)=(010)(0.85)0(0.15)10−0
≈5.7665×10−9b)
P(X=6)=(610)(0.85)6(0.15)10−6
≈0.0401c)
P(X≥9)=P(X=9)+P(X=10)
=(910)(0.85)9(0.15)10−9+(1010)(0.85)10(0.15)10−10
≈0.5443
Comments