Given population 15, 12, 6, 9, and 17. Suppose samples of size 3 are drawn from this population. Complete the table and draw the sketch of histogram. Describe the distribution
1. We have population values 6,9,12,15,17, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{6+9+12+15+17}{5}=11.8"
Variance of population
"+10.24+27.04)=15.76"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{15.76}\\approx3.9699"
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 6,9,12 & 27\/3 \\\\\n \\hdashline\n 2 & 6,9,15 & 30\/3 \\\\\n \\hdashline\n 3 & 6,9,17 & 32\/3 \\\\\n \\hdashline\n 4 & 6,12,15 & 33\/3 \\\\\n \\hdashline\n 5 & 6,12,17 & 35\/3 \\\\\n \\hdashline\n 6 & 6,15,17 & 38\/3 \\\\\n \\hdashline\n 7 & 9,12,15 & 36\/3 \\\\\n \\hdashline\n 8 & 9,12,17& 38\/3 \\\\\n \\hdashline\n 9 & 9,15,17 & 41\/3 \\\\\n \\hdashline\n 10 & 12,15,17 & 44\/3 \\\\\n \\hdashline \n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=11.8=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{12768}{90}-(11.8)^2=\\dfrac{7.88}{3}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{7.88}{3}}\\approx1.6207"
Comments
Leave a comment