Answer to Question #333456 in Statistics and Probability for nik

Question #333456

Four rowers weighing 152, 156, 160, and 164 pounds make up a rowing team. Calculate the sample mean for each of the possible random samples with a size two replacement. They can be used to calculate the sample mean's probability distribution, mean, and standard deviation.



1
Expert's answer
2022-05-03T11:01:32-0400

We have population values 152, 156, 160, and 164 population size N=4 and sample size n=2.

Mean of population (μ)(\mu) = 

152+156+160+1644=158\dfrac{152+156+160+164}{4}=158


Variance of population 


σ2=Σ(xixˉ)2N=20\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=20


σ=σ2=20=25\sigma=\sqrt{\sigma^2}=\sqrt{20}=2\sqrt{5}

The number of possible samples which can be drawn without replacement is NCn=4C2=6.^{N}C_n=^{4}C_2=6.

noSampleSamplemean (xˉ)1152,1561542152,1601563152,1641584156,1601585156,1641606160,164162\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 152, 156 & 154 \\ \hdashline 2 & 152, 160 & 156 \\ \hdashline 3 & 152, 164 & 158 \\ \hdashline 4 & 156, 160 & 158 \\ \hdashline 5 & 156, 164 & 160 \\ \hdashline 6 & 160,164 & 162 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)1541/6154/623716/61561/6156/624336/61582/6316/649928/61601/6160/625600/61621/6162/626244/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) &\bar{X}^2 f(\bar{X})\\ \hline 154 & 1/6 & 154/6 & 23716/6\\ \hdashline 156 & 1/6 & 156/6 & 24336/6\\ \hdashline 158 & 2/6 & 316/6 & 49928/6\\ \hdashline 160 & 1/6 & 160/6 &25600/6\\ \hdashline 162 & 1/6 & 162/6 & 26244/6\\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=158=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=158=\mu


The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=1498246(158)2=406=σ2n(NnN1)=\dfrac{149824}{6}-(158)^2=\dfrac{40}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=2032.5820\sigma_{\bar{X}}=\sqrt{\dfrac{20}{3}}\approx2.5820


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment