Question #333092

1.   A population consists of the numbers 2, 4, 9, 10, and 5. Let us list all possible samples size of 3 from this population. Find the mean and variance of the sampling distribution of the sample mean.


1
Expert's answer
2022-04-25T16:18:49-0400

The number of possible samples which can be selected without replacement is

(Nn)=N!n!(Nn)!==5!3!2!=452=10.\begin{pmatrix} N \\ n \end{pmatrix}=\cfrac{N! } {n! \cdot(N-n)! }=\\ =\cfrac{5! } {3! \cdot2! }=\cfrac{4\cdot5}{2}=10.


All the possible samples of sizes n=3 wich can be drawn without replacement from the population:

{(2,4,9),(2,4,10),(2,4,5),(2,9,10),(2,9,5),(2,10,5),(4,9,10),(4,9,5),(4,10,5),(9,10,5)}.\{ (2,4,9), (2,4,10),(2,4,5),(2,9,10),(2,9,5),\\ (2,10,5),(4,9,10),(4,9,5),(4,10,5),(9,10,5)\}.


Population mean:

μ=2+4+9+10+55=6.\mu=\cfrac{2+4+9+10+5}{5}=6.


Population variance:

σ2=(xiμ)2P(xi),\sigma^2=\sum(x_i-\mu)^2\cdot P(x_i),

Xμ={26,46,96,106,56}=X-\mu=\begin{Bmatrix} 2-6,4-6,9-6,10-6,5-6 \end{Bmatrix}=

={4,2,3,4,1},=\begin{Bmatrix} -4, - 2,3,4,-1 \end{Bmatrix},

σ2=(4)215+(2)215++3215+4215+(1)215=9.2.\sigma^2=(-4)^2\cdot \cfrac{1}{5}+(-2)^2\cdot \cfrac{1}{5}+\\ +3^2\cdot \cfrac{1}{5}+4^2\cdot \cfrac{1}{5}+(-1)^2\cdot \cfrac{1}{5}=9.2.



Mean of the sampling distribution of sample means:

μxˉ=μ=6.\mu_{\bar x} =\mu=6.


Variance of the sampling distribution of sample means:

σxˉ2=σ2n=9.23=3.067.\sigma^2_{\bar x}=\cfrac{\sigma^2}{n}=\cfrac{9.2}{3}=3.067.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS