Question #333011

The following data show the age (week) and height (cm) of soybean 

plant. 

Age (week) 1 2 3 4 5 6 7

Height (cm) 5 13 16 23 33 38 40

Find the least square regression line of height on age. 


1
Expert's answer
2022-04-26T11:24:04-0400

Consider pairs of points (x,y)(x,y), where xx corresponds to the age and yy corresponds to the height. The least squares regression line is the line: y^=mx+b\hat{y}=m{x}+b that minimizes the following error: E(m,b)=i=1n(yiy^)2E(m,b)=\sum_{i=1}^n(y_i-\hat{y})^2. After substitution y^=mx+b\hat{y}=mx+b we receive: E(m,b)=i=1n(yi(mxi+b))2E(m,b)=\sum_{i=1}^n(y_i-(mx_i+b))^2. After taking the derivatives with respect to mm and bb we get: Em=2i=1nxi((mxi+b)yi)=2(mi=1nxi2+bi=1nxii=1nxiyi)E_m=2\sum_{i=1}^nx_i((mx_i+b)-y_i)=2(m\sum_{i=1}^nx_i^2+b\sum_{i=1}^nx_i-\sum_{i=1}^nx_iy_i) and Eb=2i=1n((mxi+b)yi)=2(mi=1nxi+nbi=1nyi)E_b=2\sum_{i=1}^n((mx_i+b)-y_i)=2(m\sum_{i=1}^nx_i+nb-\sum_{i=1}^ny_i). Denote α=i=1nxi2\alpha=\sum_{i=1}^nx_i^2, β=i=1nxiyi\beta=\sum_{i=1}^nx_iy_i, γ=i=1nxi\gamma=\sum_{i=1}^nx_i and δ=i=1nyi\delta=\sum_{i=1}^ny_i. Necessary conditions of extrema take the form: Em=0,Eb=0E_m=0,E_b=0. The latter is equivalent to: mα+bγβ=0,m\alpha+b\gamma-\beta=0, mγ+nbδ=0m\gamma+nb-\delta=0. From the first equation we get: m=βbγαm=\frac{\beta-b\gamma}{\alpha}. We substitute it in the second equation and get: βγαγ2αb+nbδ=0\frac{\beta\gamma}{\alpha}-\frac{\gamma^2}{\alpha}b+nb-\delta=0We receive: b=δαβγnαγ2b=\frac{\delta\alpha-\beta\gamma}{n\alpha-\gamma^2}, m=nβδγnαγ2m=\frac{n\beta-\delta\gamma}{n\alpha-\gamma^2}. Expressions for mm and bb as well as verifications of sufficient conditions of extrema can be also found in the respective literature about the least square regression line. Set n=7n=7, take values from the tables and get: α=140\alpha=140, β=844\beta=844, δ=168\delta=168, γ=28\gamma=28. We receive: b=168140844287140(28)2=47b=\frac{168\cdot140-844\cdot28}{7\cdot 140-(28)^2}=-\frac47, m=7844168287140(28)2=437m=\frac{7\cdot844-168\cdot28}{7\cdot 140-(28)^2}=\frac{43}{7}.

Answer: the least square regression line has the form: y^=437x47\hat{y}=\frac{43}{7}x-\frac47. xx corresponds to the age and y^\hat{y} corresponds to the height.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS