A population consists of the values (1, 3, 4). If the samples of size 2 will be drawn from the population, find the standard deviation of the sampling distribution of the means
The population mean:
"\\mu=\\cfrac{1+3+4}{3}=\\cfrac{8}{3}."
The population variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\begin{Bmatrix}\n 1-\\cfrac{8}{3},3-\\cfrac{8}{3},4-\\cfrac{8}{3}\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-\\cfrac{5}{3}, \\cfrac{1}{3},\\cfrac{4}{3}\n\\end{Bmatrix},"
"\\sigma^2=\\bigg(\\cfrac{-5}{3}\\bigg)^2\\cdot \\cfrac{1}{3}+\\bigg(\\cfrac{1}{3}\\bigg)^2\\cdot \\cfrac{1}{3}+\\bigg(\\cfrac{4}{3}\\bigg)^2\\cdot \\cfrac{1}{3}=\\\\\n=\\cfrac{42}{27}=\\cfrac{14}{9}=1.556."
The population standard deviation:
"\\sigma=\\sqrt{1.556}=1.247."
The standard deviation of the sampling distribution of sample means:
"\\sigma_{\\bar x}=\\cfrac{\\sigma}{\\sqrt n}=\\cfrac{1.247}{\\sqrt 2}=0.882."
Comments
Leave a comment