Question #330633

The following simple random sample was selected from a normal distribution: 4, 6, 3, 5, 9, and 3.

a.     Construct a 90% confidence interval for the population mean μ.

 

b.    Construct a 95% confidence interval for the population mean μ.

 

c.     Construct a 99% confidence interval for the population mean μ.


1
Expert's answer
2022-04-20T00:11:30-0400
mean=xˉ=16(4+6+3+5+9+3)=5mean=\bar{x}=\dfrac{1}{6}(4+6+3+5+9+3)=5s2=161((45)2+(65)2+(35)2+(55)2s^2=\dfrac{1}{6-1}((4-5)^2+(6-5)^2+(3-5)^2+(5-5)^2+(95)2+(35)2)=5.2+(9-5)^2+(3-5)^2)=5.2





s=s2=5.22.280351s=\sqrt{s^2}=\sqrt{5.2}\approx2.280351

1. The critical value for α=0.1\alpha = 0.1 and df=n1=5df = n-1 = 5  degrees of freedom is tc=z1α/2;n1=2.015036.t_c = z_{1-\alpha/2; n-1} =2.015036. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(52.015036×2.2803516,=(5-2.015036\times\dfrac{2.280351}{\sqrt{6}},5+2.015036×2.2803516)5+2.015036\times\dfrac{2.280351}{\sqrt{6}})=(3.1241,6.8759)=(3.1241, 6.8759)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 3.1241<μ<6.8759,3.1241 < \mu < 6.8759, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (3.1241,6.8759).(3.1241, 6.8759).


2. The critical value for α=0.05\alpha = 0.05 and df=n1=5df = n-1 = 5  degrees of freedom is tc=z1α/2;n1=2.570543.t_c = z_{1-\alpha/2; n-1} =2.570543. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(52.570543×2.2803516,=(5-2.570543\times\dfrac{2.280351}{\sqrt{6}},5+2.570543×2.2803516)5+2.570543\times\dfrac{2.280351}{\sqrt{6}})=(2.6070,7.3930)=(2.6070, 7.3930)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 2.6070<μ<7.3930,2.6070 < \mu < 7.3930, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (2.6070,7.3930).(2.6070, 7.3930).


3. The critical value for α=0.01\alpha = 0.01 and df=n1=5df = n-1 = 5  degrees of freedom is tc=z1α/2;n1=4.031677.t_c = z_{1-\alpha/2; n-1} =4.031677. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(54.031677×2.2803516,=(5-4.031677\times\dfrac{2.280351}{\sqrt{6}},5+4.031677×2.2803516)5+4.031677\times\dfrac{2.280351}{\sqrt{6}})=(1.2467,8.7533)=(1.2467, 8.7533)

Therefore, based on the data provided, the 99% confidence interval for the population mean is 1.2467<μ<8.7533,1.2467 < \mu < 8.7533, which indicates that we are 99% confident that the true population mean μ\mu is contained by the interval (1.2467,8.7533).(1.2467, 8.7533).


4.

a. The critical value for α=0.1\alpha = 0.1 and df=n1=24df = n-1 = 24  degrees of freedom is tc=z1α/2;n1=1.710882.t_c = z_{1-\alpha/2; n-1} =1.710882. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(51.710882×2.28035125,=(5-1.710882\times\dfrac{2.280351}{\sqrt{25}},5+1.710882×2.28035125)5+1.710882\times\dfrac{2.280351}{\sqrt{25}})=(4.2197,5.7803)=(4.2197, 5.7803)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 4.2197<μ<5.7803,4.2197 < \mu < 5.7803, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (4.2197,5.7803).(4.2197, 5.7803).


b. The critical value for α=0.05\alpha = 0.05 and df=n1=24df = n-1 = 24  degrees of freedom is tc=z1α/2;n1=2.063899.t_c = z_{1-\alpha/2; n-1} =2.063899. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(52.063899×2.28035125,=(5-2.063899\times\dfrac{2.280351}{\sqrt{25}},5+2.063899×2.28035125)5+2.063899\times\dfrac{2.280351}{\sqrt{25}})=(4.0587,5.9413)=(4.0587, 5.9413)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 4.0587<μ<5.9413,4.0587 < \mu < 5.9413, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (4.0587,5.9413).(4.0587, 5.9413).


c. The critical value for α=0.01\alpha = 0.01 and df=n1=24df = n-1 = 24  degrees of freedom is tc=z1α/2;n1=2.79694.t_c = z_{1-\alpha/2; n-1} =2.79694. The corresponding confidence interval is computed as shown below:



CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(52.79694×2.28035125,=(5-2.79694\times\dfrac{2.280351}{\sqrt{25}},5+2.79694×2.28035125)5+2.79694\times\dfrac{2.280351}{\sqrt{25}})=(3.7244,6.2756)=(3.7244, 6.2756)

Therefore, based on the data provided, the 99% confidence interval for the population mean is 3.7244<μ<6.2756,3.7244 < \mu < 6.2756, which indicates that we are 99% confident that the true population mean μ\mu is contained by the interval (3.7244,6.2756).(3.7244, 6.2756).


The width of a confidence interval decreases as the sample size increases and increases as the confidence level increases.

Larger samples give narrower intervals. We are able to estimate a population mean more precisely with a larger sample size. 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS