Question #330178

A secretary makes 2 errors per page on the average. What is the probability that on the next page she makes


a) 4 or more errors?


b) No errors?


1
Expert's answer
2022-04-21T13:16:26-0400

According to the Poisson's distribution P(x=k)=λkeλk!,P(x=k)=\frac{\lambda^ke^{-\lambda}}{k!},

where λ\lambda - average value


a) P(x4)=1P(x3)=1(P(x=0)+P(x=1)++P(x=2)+P(x=3))==1(200!+211!+222!+233!)/e2==1(1+2+2+43)/e20.143=14.3%a)~P(x\ge4)=1-P(x\le3)=\\ 1-(P(x=0)+P(x=1)+\\ +P(x=2)+P(x=3))=\\ =1-(\frac{2^0}{0!}+\frac{2^1}{1!}+\frac{2^2}{2!}+\frac{2^3}{3!})/e^2=\\ =1-(1+2+2+\frac{4}{3})/e^2\approx0.143=14.3\%


b) P(x=0)=20e20!=1/e20.135=13.5%b)~P(x=0)=\frac{2^0}{e^20!}=1/e^2\approx0.135=13.5\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS