A secretary makes 2 errors per page on the average. What is the probability that on the next page she makes
a) 4 or more errors?
b) No errors?
According to the Poisson's distribution P(x=k)=λke−λk!,P(x=k)=\frac{\lambda^ke^{-\lambda}}{k!},P(x=k)=k!λke−λ,
where λ\lambdaλ - average value
a) P(x≥4)=1−P(x≤3)=1−(P(x=0)+P(x=1)++P(x=2)+P(x=3))==1−(200!+211!+222!+233!)/e2==1−(1+2+2+43)/e2≈0.143=14.3%a)~P(x\ge4)=1-P(x\le3)=\\ 1-(P(x=0)+P(x=1)+\\ +P(x=2)+P(x=3))=\\ =1-(\frac{2^0}{0!}+\frac{2^1}{1!}+\frac{2^2}{2!}+\frac{2^3}{3!})/e^2=\\ =1-(1+2+2+\frac{4}{3})/e^2\approx0.143=14.3\%a) P(x≥4)=1−P(x≤3)=1−(P(x=0)+P(x=1)++P(x=2)+P(x=3))==1−(0!20+1!21+2!22+3!23)/e2==1−(1+2+2+34)/e2≈0.143=14.3%
b) P(x=0)=20e20!=1/e2≈0.135=13.5%b)~P(x=0)=\frac{2^0}{e^20!}=1/e^2\approx0.135=13.5\%b) P(x=0)=e20!20=1/e2≈0.135=13.5%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments