Question #327628

The following data represent a random sample of 15 marks out of 20) on a Statistics quiz. Assume that the marks are normally distributed 4 7 7 5 3 10 6 8 7 9 8 9 5 4 7 a. Determine the standard deviation of the marks. b. Estimate the population mean with 95% confidence.


1
Expert's answer
2022-04-13T16:25:33-0400

First let's find mean:

μ=115(4+7+7+5+3+10+6+8++7+9+8+9+5+4+7)==115(3+24+25+6+47+28+29+10)=6.6\mu=\frac{1}{15}(4+7+7+5+3+10+6+8+\\ +7+9+8+9+5+4+7)=\\ =\frac{1}{15}(3+2\cdot4+2\cdot5+6+\\ 4\cdot7+2\cdot8+2\cdot9+10)=6.6


a) Variance:

σ2=1n1i=1n(xiμ)2==114(3.62+22.62+21.62+0.62++40.42+21.42+22.42+3.42)4.257\sigma^2=\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\mu)^2=\\ =\frac{1}{14}(3.6^2+2\cdot2.6^2+2\cdot1.6^2+0.6^2+\\ +4\cdot0.4^2+2\cdot1.4^2+2\cdot2.4^2+3.4^2)\approx4.257

Standard deviation:

σ=σ22.063\sigma=\sqrt{\sigma^2}\approx2.063


b) t-value for 15 - 1 = 14 degrees of freedom and 95% confidence is 2.145

Confidence interval:

μ±tσn=6.6±2.1452.06315=6.60±1.14\mu\pm t\frac{\sigma}{\sqrt{n}}=6.6\pm 2.145\frac{2.063}{\sqrt{15}}=6.60\pm 1.14


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS