The following data represent a random sample of 15 marks out of 20) on a Statistics quiz. Assume that the marks are normally distributed 4 7 7 5 3 10 6 8 7 9 8 9 5 4 7 a. Determine the standard deviation of the marks. b. Estimate the population mean with 95% confidence.
First let's find mean:
"\\mu=\\frac{1}{15}(4+7+7+5+3+10+6+8+\\\\\n+7+9+8+9+5+4+7)=\\\\\n=\\frac{1}{15}(3+2\\cdot4+2\\cdot5+6+\\\\\n4\\cdot7+2\\cdot8+2\\cdot9+10)=6.6"
a) Variance:
"\\sigma^2=\\frac{1}{n-1}\\sum_{i=1}^{n}(x_i-\\mu)^2=\\\\\n=\\frac{1}{14}(3.6^2+2\\cdot2.6^2+2\\cdot1.6^2+0.6^2+\\\\\n+4\\cdot0.4^2+2\\cdot1.4^2+2\\cdot2.4^2+3.4^2)\\approx4.257"
Standard deviation:
"\\sigma=\\sqrt{\\sigma^2}\\approx2.063"
b) t-value for 15 - 1 = 14 degrees of freedom and 95% confidence is 2.145
Confidence interval:
"\\mu\\pm t\\frac{\\sigma}{\\sqrt{n}}=6.6\\pm 2.145\\frac{2.063}{\\sqrt{15}}=6.60\\pm 1.14"
Comments
Leave a comment