Find 90% confidence interval for the mean of normal distribution if a sample of size 7 gave the values 9,16,10,14,8,13,14
μ=(9+16+10+14+8+13+14)/7=12\mu=(9+16+10+14+8+13+14)/7=12μ=(9+16+10+14+8+13+14)/7=12
Z(90%)=1.645
σ=∑(x−μ)2n−1=9+16+4+4+16+1+46=3\sigma=\sqrt{\frac{\sum(x-\mu)^2}{n-1}}=\sqrt{\frac{9+16+4+4+16+1+4}{6}}=3σ=n−1∑(x−μ)2=69+16+4+4+16+1+4=3
CI=μ±zσn=12±1.64537=12±1.87CI=\mu \plusmn z\frac{\sigma}{\sqrt{n}}=12 \plusmn 1.645 \frac{3}{\sqrt{7}}=12 \plusmn 1.87CI=μ±znσ=12±1.64573=12±1.87
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments