Question #325575

Consider the normal distribution of IQs with a mean of 100 and a standard deviation of 16. What percentage of IQs are

a. greater than 95?

b. less than 120

c. between 90 and 110

 



1
Expert's answer
2022-04-10T15:38:14-0400

We have a normal distribution, μ=100,σ=16.\mu=100, \sigma=16.

Let's convert it to the standard normal distribution,

z=xμσ.z=\cfrac{x-\mu}{\sigma}.


a.  z=9510016=0.31;P(X>95)=P(Z>0.31)==1P(Z<0.31)=a.\ \ z=\cfrac{95-100}{16}=-0.31;\\ P(X>95)=P(Z>-0.31)=\\ =1-P(Z<-0.31)=

=10.3783=0.6217=62.17%=1-0.3783=0.6217=62.17\% ​(from z-table).


b.  z=12010016=1.25;P(X<120)=P(Z<1.25)=0.8944=89.44%.b.\ \ z=\cfrac{120-100}{16}=1.25;\\ P(X<120)=P(Z<1.25)=0.8944=89.44\%.


c.  z1=9010016=0.63;z2=11010016=0.63;P(90<X<100)=P(0.63<Z<0.63)==P(Z<0.63)P(Z<0.63)==0.73570.2643=0.4714=47.14%.c.\ \ z_1=\cfrac{90-100}{16}=-0.63;\\ z_2=\cfrac{110-100}{16}=0.63;\\ P(90<X<100)=P(-0.63<Z<0.63)=\\ =P(Z<0.63)-P(Z<-0.63)=\\ =0.7357-0.2643=0.4714=47.14\%.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS