Question #325228

 If the random variable X takes the values 1, 2, 3 and 4 such that

P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution and

cumulative distribution function of X.



1
Expert's answer
2022-04-08T07:11:01-0400

Let P(X=1)=p;P(X=1)=p;

P(X=2)=p3;P(X=3)=p;P(X=4)=p5;p+p3+p+p5=1;2p+5p+3p30=1;p=1538.P(X=2)=\cfrac{p}{3};\\ P(X=3)=p;\\ P(X=4)=\cfrac{p}{5};\\ p+\cfrac{p}{3}+p+\cfrac{p}{5}=1;\\ 2p+\cfrac{5p+3p}{30}=1;\\ p=\cfrac{15}{38}.

The probability distribution:

P(X=1)=1538,P(X=2)=538,P(X=3)=1538,P(X=4)=338.P(X=1)=\cfrac{15}{38},P(X=2)=\cfrac{5}{38}, \\P(X=3)=\cfrac{15}{38},P(X=4)=\cfrac{3}{38}.



If x<1,FX(x)=P(Xx)=0.x<1, F_X(x)=P(X\le x)=0.

Next, if 1x<2,FX(x)=P(Xx)=P(X=1)=1538.1\le x<2, F_X(x)=P(X\le x)=P(X=1)=\cfrac{15}{38}.

Next, if 2x<3,2\le x<3,

FX(x)=P(Xx)=P(X=1)+P(X=2)=1538+538=2038.F_X(x)=P(X\le x)=P(X=1)+P(X=2)=\cfrac{15}{38}+\cfrac{5}{38}=\cfrac{20}{38}.

Next, if 3x<4,3\le x<4,

FX(x)=P(Xx)==P(X=1)+P(X=2)+P(X=3)==1538+538+1538=3538.F_X(x)=P(X\le x)=\\ =P(X=1)+P(X=2)+P(X=3)=\\ =\cfrac{15}{38}+\cfrac{5}{38}+\cfrac{15}{38}=\cfrac{35}{38}.

Finally, if x>4,x>4,

FX(x)=P(Xx)==P(X=1)+P(X=2)+P(X=3)+P(X=4)==1538+538+1538+338=3838=1.F_X(x)=P(X\le x)=\\ =P(X=1)+P(X=2)+P(X=3)+P(X=4)=\\ =\cfrac{15}{38}+\cfrac{5}{38}+\cfrac{15}{38}+\cfrac{3}{38}=\cfrac{38}{38}=1.


We have the cumulative distribution function of X:

FX(x)={0for x<11538for 1x<22038for 2x<33538for 3x<41for x4.F_X(x)=\begin{cases} 0 & & &\text{for } x<1 \\ \cfrac{15}{38} & & &\text{for } 1\le x<2\\ \cfrac{20}{38} & & &\text{for } 2\le x<3\\ \cfrac{35}{38} & & &\text{for } 3\le x<4\\ 1 & & &\text{for } x\ge4. \end{cases}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS