A continuous random variable is normally distributed with a mean of 45 and standard deviation 0f 6. Illustrate the following notations in a normal curve.
P( 30 < X < 50 )
P( 33 ≤ X ≤ 39)
P( X < 57 )
P(30<X<50)=P(30−456<Z<50−456)=P(−2.5<Z<0.83)=0.7967−0.00621=0.79P(30<X<50)=P(\frac{30-45}{6}<Z<\frac{50-45}{6})=P(-2.5<Z<0.83)=0.7967-0.00621=0.79P(30<X<50)=P(630−45<Z<650−45)=P(−2.5<Z<0.83)=0.7967−0.00621=0.79
P(33≤X≤39)=P(33−456<Z<39−456)=P(−2<Z<−1)=0.158166−0.02275=0.135P(33\le X \le 39)=P(\frac{33-45}{6}<Z<\frac{39-45}{6})=P(-2<Z<-1)=0.158166-0.02275=0.135P(33≤X≤39)=P(633−45<Z<639−45)=P(−2<Z<−1)=0.158166−0.02275=0.135
P(X<57)=P(Z<57−456)=P(Z<2)=0.9772P(X<57)=P(Z<\frac{57-45}{6})=P(Z<2)=0.9772P(X<57)=P(Z<657−45)=P(Z<2)=0.9772
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments