C. Find the probabilities on a standard normal curve.
1. P(-3.0 ˂ z < -1.68)
2. P(-2.76 < z < 2)
3. P(1.53 < z < 2)
1. P(−3.0<z<−1.68)==P(z<−1.68)−P(z<−3.0)=1.\ P(-3.0<z<-1.68)=\\=P(z<-1.68)-P(z<-3.0)=1. P(−3.0<z<−1.68)==P(z<−1.68)−P(z<−3.0)=
=0.04648−0.00135=0.04513=0.04648-0.00135=0.04513=0.04648−0.00135=0.04513 (from z-table)
2. P(−2.76<z<2)==P(z<2)−P(z<−2.76)=2.\ P(-2.76<z<2)=\\=P(z<2)-P(z<-2.76)=2. P(−2.76<z<2)==P(z<2)−P(z<−2.76)=
=0.97725−0.00289=0.97436=0.97725-0.00289=0.97436=0.97725−0.00289=0.97436 (from z-table)
3. P(1.53<z<2)==P(z<2)−P(z<1.53)=3.\ P(1.53<z<2)=\\=P(z<2)-P(z<1.53)=3. P(1.53<z<2)==P(z<2)−P(z<1.53)=
=0.97725−0.93699=0.04026=0.97725-0.93699=0.04026=0.97725−0.93699=0.04026 (from z-table)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments