Question #323907

If P (A) = 1/3

, P (B^c) = 1/4

, then P (AB) = 0.


True or False?


1
Expert's answer
2022-04-06T10:48:34-0400

False:Ω=[0,1],P=λA=[0,13],B=[0,34]P(A)=13P(Bc)=134=14P(AB)=P([0,13])=130False:\\\varOmega =\left[ 0,1 \right] ,P=\lambda \\A=\left[ 0,\frac{1}{3} \right] ,B=\left[ 0,\frac{3}{4} \right] \\P\left( A \right) =\frac{1}{3}\\P\left( B^c \right) =1-\frac{3}{4}=\frac{1}{4}\\P\left( A\cap B \right) =P\left( \left[ 0,\frac{1}{3} \right] \right) =\frac{1}{3}\ne 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS