A random variable has PDF p_i = 2(1/3)^i and takes on values in the positive integers. What is the probability that it takes on a value between 10 and 20, inclusive? Show your work step by step.
P(10⩽X⩽20)=∑n=1020P(X=n)==∑n=10202⋅(13)n=[geometric progressionwith 11terms,b0=(13)10,q=13]==2(13)10(1−(13)12)1−13=139(1−1312)=5.08052×10−5P\left( 10\leqslant X\leqslant 20 \right) =\sum_{n=10}^{20}{P\left( X=n \right)}=\\=\sum_{n=10}^{20}{2\cdot \left( \frac{1}{3} \right) ^n}=\left[ \begin{array}{c} geometric\,\,progression\\ with\,\,11 terms, b_0=\left( \frac{1}{3} \right) ^{10},q=\frac{1}{3}\\\end{array} \right] =\\=2\frac{\left( \frac{1}{3} \right) ^{10}\left( 1-\left( \frac{1}{3} \right) ^{12} \right)}{1-\frac{1}{3}}=\frac{1}{3^9}\left( 1-\frac{1}{3^{12}} \right) =5.08052\times 10^{-5}P(10⩽X⩽20)=∑n=1020P(X=n)==∑n=10202⋅(31)n=[geometricprogressionwith11terms,b0=(31)10,q=31]==21−31(31)10(1−(31)12)=391(1−3121)=5.08052×10−5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment