We have population values "14, 19, 26, 31, 48, 53" population size "N=6" and sample size "n=4."
Thus, the number of possible samples which can be drawn without replacement is "\\dbinom{6}{4}=15."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean(\\bar{X}) \\\\ \\hline\n 14, 19, 26, 31 & 22.5\\\\\n \\hdashline\n 14, 19, 26, 48 & 26.75\\\\\n \\hdashline\n 14, 19, 26, 53 & 28\\\\\n \\hdashline\n 14, 19, 31, 48 & 28\\\\\n \\hdashline\n 14, 19, 31, 53 & 29.25\\\\\n \\hdashline\n 14, 19, 48, 53 & 33.5\\\\\n \\hdashline\n14, 26, 31, 48 & 29.75\\\\\n \\hdashline\n14, 26, 31, 53 & 31\\\\\n \\hdashline\n14, 26, 48, 53 & 35.25\\\\\n \\hdashline\n14, 31, 48, 53 & 36.5\\\\\n \\hdashline\n19, 26, 31, 48 & 31\\\\\n \\hdashline\n19, 26, 31, 53 & 32.25\\\\\n \\hdashline\n19, 26, 48, 53 & 36.5\\\\\n \\hdashline\n19, 31, 48, 53 & 37.75\\\\\n \\hdashline\n26, 31, 48, 53 & 39.5\\\\\n \\hdashline\n\\end{array}"a.
The sampling distribution of the sample mean "\\bar{X}" is
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n & \\bar{X} & f & f(\\bar{X}) & Xf(\\bar{X})& X^2f(\\bar{X}) \\\\ \\hline\n & 22.5 & 1 & 1\/15 & 90\/60 & 8100\/240\\\\\n \\hdashline\n & 26.75 & 1 & 1\/15 & 107\/60 & 11449\/240 \\\\\n \\hdashline\n & 28 & 2 & 2\/15 & 224\/60 & 25088\/240\\\\\n \\hdashline\n & 29.25 & 1 & 1\/15 & 117\/60 & 13689\/240 \\\\\n \\hdashline\n & 29.75 & 1 & 1\/15 & 119\/60& 14161\/240 \\\\\n \\hdashline\n & 31 & 2 & 2\/15 & 248\/60 & 30752\/240 \\\\\n \\hdashline\n & 32.25 & 1 & 1\/15 & 129\/60 & 16641\/240\\\\\n \\hdashline\n & 33.5 & 1 & 1\/15 & 134\/60 & 17956\/240 \\\\\n \\hdashline\n & 35.25 & 1 & 1\/15 & 141\/60 & 19881\/240 \\\\\n \\hdashline\n & 36.5 & 2 & 2\/15 & 292\/60 & 42632\/240 \\\\\n \\hdashline\n & 37.75 & 1 & 1\/15 & 151\/60 & 22801\/240 \\\\\n \\hdashline\n & 39.5 & 1 & 1\/15 & 158\/60 & 24964\/240 \\\\\n \\hdashline\n Sum= & & 16 & 1 & 191\/6 & 124057\/120\\\\\n \\hdashline\n\\end{array}"b.The mean of the sample means is
"\\mu_{\\bar{X}}=E(\\bar{X})=191\/6=\\mu"c.
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=E(\\bar{X}^2)-(E(\\bar{X}))^2""=\\dfrac{124057}{120}-(\\dfrac{191}{6})^2=\\dfrac{7361}{360}"The standard error of the mean
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma^2_{\\bar{X}}}=\\sqrt{\\dfrac{7361}{360}}\\approx4.52186"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean(\\bar{X}) \\\\ \\hline\n 14, 19, 26, 31 & 22.5\\\\\n \\hdashline\n 14, 19, 26, 48 & 26.75\\\\\n \\hdashline\n 14, 19, 26, 53 & 28\\\\\n \\hdashline\n 14, 19, 31, 48 & 28\\\\\n \\hdashline\n 14, 19, 31, 53 & 29.25\\\\\n \\hdashline\n 14, 19, 48, 53 & 33.5\\\\\n \\hdashline\n14, 26, 31, 48 & 29.75\\\\\n \\hdashline\n14, 26, 31, 53 & 31\\\\\n \\hdashline\n14, 26, 48, 53 & 35.25\\\\\n \\hdashline\n14, 31, 48, 53 & 36.5\\\\\n \\hdashline\n19, 26, 31, 48 & 31\\\\\n \\hdashline\n19, 26, 31, 53 & 32.25\\\\\n \\hdashline\n19, 26, 48, 53 & 36.5\\\\\n \\hdashline\n19, 31, 48, 53 & 37.75\\\\\n \\hdashline\n26, 31, 48, 53 & 39.5\\\\\n \\hdashline\n\\end{array}"
Comments
Leave a comment