Answer to Question #322367 in Statistics and Probability for Madi

Question #322367
  1. The probability that Tim will sink a foul shot is 70%. If Tim attempts 10


   foul shots, what is the probability that

a)    he sinks exactly 7 shots

b)   he sinks at least 7 shots

c)    he sinks at most 7 shots

d)   he sinks between 4 and 6 shots, inclusive.





1
Expert's answer
2022-06-27T09:44:14-0400

Let X=X= the number of shots sinked by Tim: XBin(n,p).X\sim Bin (n, p).

Given n=10,p=0.7,q=1p=0.3.n=10, p=0.7, q=1-p=0.3.

a)


P(X=7)=(107)(0.7)7(0.3)107=0.266827932P(X=7)=\dbinom{10}{7}(0.7)^{7}(0.3)^{10-7}=0.266827932

b)


P(X7)=P(X=7)+P(X=8)+P(X=9)P(X\ge 7)=P(X=7)+P(X=8)+P(X=9)

+P(X=10)=(107)(0.7)7(0.3)107+P(X=10)=\dbinom{10}{7}(0.7)^{7}(0.3)^{10-7}

+(108)(0.7)8(0.3)108+(109)(0.7)9(0.3)109+\dbinom{10}{8}(0.7)^{8}(0.3)^{10-8}+\dbinom{10}{9}(0.7)^{9}(0.3)^{10-9}

+(1010)(0.7)10(0.3)1010=0.6496107184+\dbinom{10}{10}(0.7)^{10}(0.3)^{10-10}=0.6496107184

c)


P(X7)=1P(X=8)P(X=9)P(X\le 7)=1-P(X=8)-P(X=9)

P(X=10)=1(108)(0.7)8(0.3)108-P(X=10)=1-\dbinom{10}{8}(0.7)^{8}(0.3)^{10-8}

(109)(0.7)9(0.3)109(1010)(0.7)10(0.3)1010-\dbinom{10}{9}(0.7)^{9}(0.3)^{10-9}-\dbinom{10}{10}(0.7)^{10}(0.3)^{10-10}

=0.6172172136=0.6172172136

d)


P(4X6)=P(X=4)+P(X=5)P(4\le X\le 6)=P(X=4)+P(X=5)

+P(X=6)=(104)(0.7)4(0.3)104+P(X=6)=\dbinom{10}{4}(0.7)^{4}(0.3)^{10-4}

+(105)(0.7)5(0.3)105+(106)(0.7)6(0.3)106+\dbinom{10}{5}(0.7)^{5}(0.3)^{10-5}+\dbinom{10}{6}(0.7)^{6}(0.3)^{10-6}

=0.3397972032=0.3397972032


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment