For a group of 20 items, sum of X = 1452, sum of x 2 = 144800 and mode = 67,
find the Karl Pearson’s coefficient of skewness and interpret the results.
xˉ=∑xin=145220=72.6s=∑xi2−nxˉ2n=144800−20⋅72.6220=44.3761K=xˉ−Mos=72.6−6744.3761=0.126194The distribution is positively skewed\bar{x}=\frac{\sum{x_i}}{n}=\frac{1452}{20}=72.6\\s=\sqrt{\frac{\sum{{x_i}^2}-n\bar{x}^2}{n}}=\sqrt{\frac{144800-20\cdot 72.6^2}{20}}=44.3761\\K=\frac{\bar{x}-Mo}{s}=\frac{72.6-67}{44.3761}=0.126194\\The\,\,distribution\,\,is\,\,positively\,\,skewedxˉ=n∑xi=201452=72.6s=n∑xi2−nxˉ2=20144800−20⋅72.62=44.3761K=sxˉ−Mo=44.376172.6−67=0.126194Thedistributionispositivelyskewed
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments