There are N urns in which M balls are randomly scattered. Find the probability p that the given (for example, the first) urn contains exactly k balls.
"The\\,\\,number\\,\\,of\\,\\,ways\\,\\,to\\,\\,scatter\\,\\,M\\,\\,balls\\,\\,in\\,\\,N\\,\\,urns\\,\\,is\\,\\,N^M,\\\\\\sin ce\\,\\,for\\,\\,each\\,\\,ball\\,\\,there\\,\\,are\\,\\,N\\,\\,posibilities.\\\\The\\,\\,number\\,\\,of\\,\\,ways\\,\\,to\\,\\,scatter\\,\\,balls\\,\\,so\\,\\,tht\\,\\,the\\,\\,first\\,\\,urn\\,\\,contains\\,\\,k\\,\\,balls\\\\is\\,\\,the\\,\\,number\\,\\,of\\,\\,ways\\,\\,to\\,\\,select\\,\\,k\\,\\,balls\\,\\,to\\,\\,the\\,\\,first\\,\\,urn\\,\\,\\\\multiplied\\,\\,by\\,\\,the\\,\\,number\\,\\,of\\,\\,ways\\,\\,to\\,\\,scatter\\,\\,other\\,\\,M-K\\,\\,balls\\,\\,to\\,\\,N-1 urns,\\\\that\\,\\,is\\,\\,C_{M}^{K}\\cdot \\left( N-1 \\right) ^{M-K}\\\\The\\,\\,probability\\,\\,is\\\\\\frac{C_{M}^{K}\\left( N-1 \\right) ^{M-K}}{N^M}"
Comments
Leave a comment