4 independent shots are fired from the aircraft at the aircraft. The probability of hitting each shot is 0.3. Two hits are obviously enough to destroy (failure) an aircraft; with one hit, the aircraft is hit with a probability of 0.6. Find the probability that the aircraft will be hit.
"H_0:0 hits\\\\H_1:1 hits\\\\H_2:\\geqslant 2 hits\\\\A-aircraft\\,\\,destroyed\\\\P\\left( H_0 \\right) =\\left( 1-0.3 \\right) ^4=0.2401\\\\P\\left( H_1 \\right) =C_{4}^{1}\\cdot 0.3\\cdot \\left( 1-0.3 \\right) ^3=0.4116\\\\P\\left( H_2 \\right) =1-P\\left( H_0 \\right) -P\\left( H_1 \\right) =1-0.2401-0.4116=0.3483\\\\P\\left( A|H_0 \\right) =0,P\\left( A|H_1 \\right) =0.6,P\\left( A|H_2 \\right) =1\\\\P\\left( A \\right) =P\\left( A|H_0 \\right) P\\left( H_0 \\right) +P\\left( A|H_1 \\right) P\\left( H_1 \\right) +P\\left( A|H_2 \\right) P\\left( H_2 \\right) =\\\\=0\\cdot 0.2401+0.6\\cdot 0.4116+1\\cdot 0.3483=0.59526\\\\"
Comments
Leave a comment