Solving Problems Involving Sample Size Determination
Apply the knowledge you obtained from the discussion by solving the given problems below.
1. A 95% confidence interval has to be created to estimate the mean volume of contents in the
bottles of Honey-Z. Assume that the population standard deviation is 30 ml. Calculate the sample
size needed if the margin of error is no more than:
a. 6 ml
b. 5 ml
c. 4ml
d. 3 ml
2. How large sample size is required to determine the mean IQ of seventh graders of Luis Palma
National High School within +5 points, population standard deviation of 25, and with the following
confidence level?
a. 98%
b. 95%.
c. 90%.
d. 80%.
"1:\\\\\\frac{\\sigma}{\\sqrt{n}}z_{\\frac{1+\\gamma}{2}}\\leqslant E\\Rightarrow n\\geqslant \\frac{\\left( \\sigma z_{\\frac{1+\\gamma}{2}} \\right) ^2}{E^2}=\\frac{\\left( 30\\cdot 1.960 \\right) ^2}{E^2}=\\frac{3457.44}{E^2}\\\\a:n\\geqslant \\frac{3457.44}{6^2}=96.04\\Rightarrow n=97\\\\b:n\\geqslant \\frac{3457.44}{5^2}=138.298\\Rightarrow n=139\\\\c:n\\geqslant \\frac{3457.44}{4^2}=216.09\\Rightarrow n=217\\\\d:n\\geqslant \\frac{3457.44}{3^2}=384.16\\Rightarrow n=385\\\\2:\\\\\\frac{\\sigma}{\\sqrt{n}}z_{\\frac{1+\\gamma}{2}}\\leqslant E\\Rightarrow n\\geqslant \\frac{\\sigma ^2}{E^2}{z_{\\frac{1+\\gamma}{2}}}^2=\\frac{25^2}{5^2}{z_{\\frac{1+\\gamma}{2}}}^2=25{z_{\\frac{1+\\gamma}{2}}}^2\\\\a:n\\geqslant 25\\cdot 2.3263^2=135.3\\Rightarrow n=136\\\\b:n\\geqslant 25\\cdot 1.960^2=96.04\\Rightarrow n=97\\\\c:n\\geqslant 25\\cdot 1.645^2=67.64\\Rightarrow n=68\\\\d:n\\geqslant 25\\cdot 1.282^2=41.06\\Rightarrow n=42"
Comments
Leave a comment