Assume the random variable X can take values of -1, 0, 1, 2. The probabilities are 1/2c 3/4c 5/8c 2/16c. As a result, the constant c =
P(−1)+P(0)+P(1)+P(2)=112c+34c+58c+216c=1816c+1216c+1016c+216c=13216c=11c=1632=12∴c=2P(-1)+P(0)+P(1)+P(2)=1\\ \frac{1}{2c}+\frac{3}{4c}+\frac{5}{8c}+\frac{2}{16c}=1\\ \frac{8}{16c}+\frac{12}{16c}+\frac{10}{16c}+\frac{2}{16c}=1\\ \frac{32}{16c}=1\\ \frac{1}{c}=\frac{16}{32}=\frac{1}{2}\\ \therefore c=2P(−1)+P(0)+P(1)+P(2)=12c1+4c3+8c5+16c2=116c8+16c12+16c10+16c2=116c32=1c1=3216=21∴c=2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments