X is a normally distributed random variable with a mean of 60 and standard
deviation of 8. Find the probabilities indicated by using the table.
(a) P(X < 52)
(b) P(48 < X < 64)
(c) P(X > 57)
a. P(X<52)=P(X<x−μσ)=P(X<52−608)=P(X<−1)P(X<52)=P(X<\frac{x-\mu}{\sigma})=P(X<\frac{52-60}{8})=P(X<-1)P(X<52)=P(X<σx−μ)=P(X<852−60)=P(X<−1)
P(X<52)=0.1581
b.
P(48<X<64)=P(48−648<X<64−608)=P(−1.5<X<0.5)=0.1915+0.4332=0.6247P(48<X<64)=P(\frac{48-64}{8}<X<\frac{64-60}{8})=P(-1.5<X<0.5)=0.1915+0.4332=0.6247P(48<X<64)=P(848−64<X<864−60)=P(−1.5<X<0.5)=0.1915+0.4332=0.6247
c. P(X>57)=P(X>57−608)=P(X>−0.375)=1−P(X<−0.375)=1−0.35569=0.64431P(X>57)=P(X>\frac{57-60}{8})=P(X>-0.375)=1-P(X<-0.375)=1-0.35569=0.64431P(X>57)=P(X>857−60)=P(X>−0.375)=1−P(X<−0.375)=1−0.35569=0.64431
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments