Question #318711

X is a normally distributed random variable with a mean of 60 and standard






deviation of 8. Find the probabilities indicated by using the table.






(a) P(X < 52)






(b) P(48 < X < 64)






(c) P(X > 57)

1
Expert's answer
2022-03-29T10:59:28-0400

a. P(X<52)=P(X<xμσ)=P(X<52608)=P(X<1)P(X<52)=P(X<\frac{x-\mu}{\sigma})=P(X<\frac{52-60}{8})=P(X<-1)

P(X<52)=0.1581

b.

P(48<X<64)=P(48648<X<64608)=P(1.5<X<0.5)=0.1915+0.4332=0.6247P(48<X<64)=P(\frac{48-64}{8}<X<\frac{64-60}{8})=P(-1.5<X<0.5)=0.1915+0.4332=0.6247

c. P(X>57)=P(X>57608)=P(X>0.375)=1P(X<0.375)=10.35569=0.64431P(X>57)=P(X>\frac{57-60}{8})=P(X>-0.375)=1-P(X<-0.375)=1-0.35569=0.64431






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS