1.Given a finite population 12, 14, 15, 16, and 20.
a Find the mean and the standard deviation to estimate the parameters.
b. Set up a sampling distribution of the mean using a sample size of 2 without replacement.
c. Show that the sampling distribution of the sample means is an unbiased estimator of the population mean.
2. Given the following data n = 75,= 50, and a = 10, the sampled population is normally distributed. a Compute the standard error of the mean.
b. At 95% confidence level, what is the margin of error?
c. Find 90% confidence interval for the population mean.
"a:\\\\\\mu =\\frac{12+14+15+16+20}{5}=15.4\\\\\\sigma =\\sqrt{\\frac{\\left( 12-15.4 \\right) ^2+\\left( 14-15.4 \\right) ^2+\\left( 15-15.4 \\right) ^2+\\left( 16-15.4 \\right) ^2+\\left( 20-15.4 \\right) ^2}{5}}=2.6533\\\\b:\\\\Samples\\,\\,are\\\\\\left( 12,14 \\right) ,\\bar{x}=13\\\\\\left( 12,15 \\right) ,\\bar{x}=13.5\\\\\\left( 12,16 \\right) ,\\bar{x}=14\\\\\\left( 12,20 \\right) ,\\bar{x}=16\\\\\\left( 14,15 \\right) ,\\bar{x}=14.5\\\\\\left( 14,16 \\right) ,\\bar{x}=15\\\\\\left( 14,20 \\right) ,\\bar{x}=17\\\\\\left( 15,16 \\right) ,\\bar{x}=15.5\\\\\\left( 15,20 \\right) ,\\bar{x}=17.5\\\\\\left( 16,20 \\right) ,\\bar{x}=18\\\\P\\left( \\bar{x}=13 \\right) =P\\left( \\bar{x}=13.5 \\right) =P\\left( \\bar{x}=14 \\right) =P\\left( \\bar{x}=14.5 \\right) =P\\left( \\bar{x}=15 \\right) =\\\\=P\\left( \\bar{x}=15.5 \\right) =P\\left( \\bar{x}=16 \\right) =P\\left( \\bar{x}=17 \\right) =P\\left( \\bar{x}=17.5 \\right) =P\\left( \\bar{x}=18 \\right) =0.1\\\\c:\\\\E\\bar{x}=0.1\\left( 13+13.5+14+14.5+15+15.5+16+17+17.5+18 \\right) =15.4\\\\2.a:\\\\s=\\frac{\\sigma}{\\sqrt{n}}=\\frac{10}{\\sqrt{75}}=1.1547\\\\b:\\\\E=\\frac{\\sigma}{\\sqrt{n}}t_{n-1,\\frac{1+\\gamma}{2}}=\\frac{10}{\\sqrt{75}}\\cdot 1.9925=2.30074\\\\c:\\\\\\gamma =0.9: \\left( \\bar{x}-\\frac{s}{\\sqrt{n}}t_{n-1,\\frac{1+\\gamma}{2}},\\bar{x}+\\frac{s}{\\sqrt{n}}t_{n-1,\\frac{1+\\gamma}{2}} \\right) =\\\\=\\left( 50-\\frac{10}{\\sqrt{75}}\\cdot 1.6657,50+\\frac{10}{\\sqrt{75}}\\cdot 1.6657 \\right) =\\left( 48.0766,51.9234 \\right) \\\\\\gamma =0.95: \\left( \\bar{x}-E,\\bar{x}+E \\right) =\\left( 50-2.3007,50+2.3007 \\right) =\\\\=\\left( 47.6993,52.3007 \\right)"
Comments
Leave a comment