Let X be a random variable with pdf
π(π₯) = {
2(1 + π₯)
27 ππ 2 β€ π₯ β€ 5
0 ππ‘βπππ€ππ π
Find (i) π(π < 4) (ii) π(3 < π₯ β€ 4)
The density function of sheer strength of spot welds is given by
π(π₯) = {
π₯/ 160000 πππ 0 β€ π₯ β€ 400
800 β π₯/ 160000 πππ 400 β€ π₯ β€ 800
Find the number a such that π(π < π) = 0.50
"i:\\\\P\\left( X<4 \\right) =\\int_4^5{f\\left( x \\right) dx}=\\int_4^5{\\frac{2\\left( 1+x \\right)}{27}dx}=\\frac{\\left( 1+x \\right) ^2}{27}|_{4}^{5}=\\frac{11}{27}\\\\ii:\\\\P\\left( 3<X\\leqslant 4 \\right) =\\int_3^4{\\frac{2\\left( 1+x \\right)}{27}dx}=\\frac{\\left( 1+x \\right) ^2}{27}|_{3}^{4}=\\frac{1}{3}\\\\\\\\a\\leqslant 400:\\\\P\\left( X<a \\right) =\\int_0^a{f\\left( x \\right) dx}=\\int_0^a{\\frac{x}{160000}dx}=\\frac{a^2}{320000}\\\\\\frac{a^2}{320000}=0.5\\Rightarrow a^2=160000\\Rightarrow a=400\\\\a=400 satisfies\\,\\,P\\left( X<a \\right) =0.5"
Comments
Leave a comment