Random samples of size π = 2 are drawn from a finite population
consisting of the numbers 5,6,7,8, and 9.
a. Find the mean of the population π.
b. Find the standard deviation of the population π.
c. Find the mean of the sampling distribution of the sample means ππΜ .
d. Find the standard deviation of the sampling distribution of the sample
means ππΜ .
e. Verify the Central Limit theorem by:
I. Comparing π and ππΜ .
II. Comparing π and ππΜ .
"a:\\mu =\\frac{5+6+7+8+9}{5}=7\\\\b:\\sigma =\\sqrt{\\frac{\\left( 5-7 \\right) ^2+\\left( 6-7 \\right) ^2+\\left( 7-7 \\right) ^2+\\left( 8-7 \\right) ^2+\\left( 9-7 \\right) ^2}{5}}=\\sqrt{2}\\\\c:All\\,\\,samples\\\\\\left( 5,6 \\right) ,\\bar{x}=5.5\\\\\\left( 5,7 \\right) ,\\bar{x}=6\\\\\\left( 5,8 \\right) ,\\bar{x}=6.5\\\\\\left( 5,9 \\right) ,\\bar{x}=7\\\\\\left( 6,7 \\right) ,\\bar{x}=6.5\\\\\\left( 6,8 \\right) ,\\bar{x}=7\\\\\\left( 6,9 \\right) ,\\bar{x}=7.5\\\\\\left( 7,8 \\right) ,\\bar{x}=7.5\\\\\\left( 7,9 \\right) ,\\bar{x}=8\\\\\\left( 8,9 \\right) ,\\bar{x}=8.5\\\\\\mu _{\\bar{x}}=\\frac{5.5+6+2\\cdot 6.5+2\\cdot 7+2\\cdot 7.5+8+8.5}{10}=7\\\\d: \\sigma _{\\bar{x}}=\\sqrt{\\frac{\\left( 5.5-7 \\right) ^2+\\left( 6-7 \\right) ^2+2\\cdot \\left( 6.5-7 \\right) ^2+2\\left( 7-7 \\right) ^2+2\\left( 7.5-7 \\right) ^2+\\left( 8-7 \\right) ^2+\\left( 8.5-7 \\right) ^2}{10}}=\\sqrt{0.75}\\\\e:\\\\I:\\mu =\\mu _{\\bar{x}}\\\\II:\\frac{\\sigma}{\\sqrt{2}}\\sqrt{\\frac{5-2}{5-1}}=\\frac{\\sqrt{2}}{\\sqrt{2}}\\sqrt{\\frac{3}{4}}=\\sqrt{0.75}=\\sigma _{\\bar{x}}\\\\"
Comments
Leave a comment