Solve for the mean and the variance of the discrete random variable x wich can take only the values 2,4,5 and 9 given that P(2) =9/20, P(4) =1/20, P(5) = 1/5 and P(9)= 3/10
The mean:
"\\mu=\\sum x_i\\cdot P(x_i)=\\\\\n=2\\cdot\\cfrac{9}{20}+4\\cdot\\cfrac{1}{20}+5\\cdot\\cfrac{1}{5}+9\\cdot\\cfrac{3}{10}=4.8."
The variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\begin{Bmatrix}\n 2-4.8, 4-4.8, 5-4.8, 9-4.8\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-2.8, -0.8, 0.2, 4.2\n\\end{Bmatrix},"
"\\sigma^2=(-2.8)^2\\cdot \\cfrac{9}{20}+(-0.8)^2\\cdot \\cfrac{1}{20}+0.2^2\\cdot \\cfrac{1}{5}+4.2^2\\cdot \\cfrac{3}{10}=8.86."
Comments
Leave a comment