The maximum likelihood estimate for λ
of a Poisson distribution P(X=x)=f(x,λ)
"\\sum_i{\\ln f\\left( x_i,\\lambda \\right)}\\rightarrow \\max \\\\l=\\sum_i{\\ln \\frac{\\lambda ^{x_i}e^{-\\lambda}}{x_i!}}=\\left( x_1+x_2+...+x_n \\right) \\ln \\lambda -n\\lambda -\\ln x_1!x_2!...x_n!\\rightarrow \\max \\\\\\frac{dl}{d\\lambda}=\\frac{x_1+x_2+...+x_n}{\\lambda}-n\\\\\\frac{dl}{d\\lambda}=0\\Rightarrow \\lambda =\\bar{x}\\\\It\\,\\,is\\,\\,\\max because\\,\\,l\\left( 0 \\right) =-\\infty ,l\\left( +\\infty \\right) =-\\infty \\\\Thus\\\\\\hat{\\lambda}=\\bar{x}"
Comments
Leave a comment