A ramdom sample of 18 bottles of 500-ml C-Softdrink had a mean content of 480 ml with a standard deviation of 4 ml, while sample of 14 bottles of 500-ml P-Softdrink had a mean content of 490 ml with standard deviation of 5 ml. Using 0.01 level of significance, can you say that C-Softdrink has lesser mean content than P-Softdrink
"H_0:\\mu _1\\geqslant \\mu _2\\\\H_1:\\mu _1<\\mu _2\\\\\\nu =\\frac{\\left( \\frac{{s_1}^2}{n_1}+\\frac{{s_2}^2}{n_2} \\right) ^2}{\\frac{1}{n_1-1}\\left( \\frac{{s_1}^2}{n_1} \\right) ^2+\\frac{1}{n_2-1}\\left( \\frac{{s_2}^2}{n_2} \\right) ^2}=\\frac{\\left( \\frac{4^2}{18}+\\frac{5^2}{14} \\right) ^2}{\\frac{1}{17}\\left( \\frac{4^2}{18} \\right) ^2+\\frac{1}{13}\\left( \\frac{5^2}{14} \\right) ^2}=24.5178\\approx 25\\\\T=\\frac{\\bar{x}_1-\\bar{x}_2}{\\sqrt{\\frac{{s_1}^2}{n_1}+\\frac{{s_2}^2}{n_2}}}=\\frac{480-490}{\\sqrt{\\frac{4^2}{18}+\\frac{5^2}{14}}}=-6.11463\\\\P-value:\\\\P\\left( T<-6.11463 \\right) =F_{t,25}\\left( -6.11463 \\right) =1.08\\cdot 10^{-6}<\\alpha \\Rightarrow \\\\\\Rightarrow \\mu _1<\\mu _2"
Comments
Leave a comment