Find the expected value of the random variable X and its variance having the following density function:
f(x) = 5 (1-x4) 0<x<2
= 0 elsewhere
Full details math and explain.
Expected value
"E(X)=5\u222b_0^2x(1-x^4 )dx=5\u222b_0^2x-x^5 dx=5[\\frac{x^2}{2}-\\frac{x^6}{6}]_0^2=5[(\\frac{2^2}{2}-\\frac{2^6}{6})-0]=-\\frac{130}{3}"
Variance
"Var(X)=E(X^2)-(E(X))^2"
"E(X^2)=5\u222b_0^2x^2 (1-x^4 )dx=5\u222b_0^2x^2-x^6 dx=5[\\frac{x^3}{3}-\\frac{x^7}{7}]_0^2=5[(\\frac{2^3}{3}-\\frac{2^7}{7})-0]=-\\frac{1640}{21}"
"Var(X)=-\\frac{1640}{21}-(-\\frac{130}{3})^2=-\\frac{123220}{63}=-1955.8730"
Comments
Leave a comment