We have
{ P ( X = x ) P ( Y = y ) P ( X + Y = x + y ) = C m x C n y C m + n x + y P ( X = x + 1 ) P ( Y = y − 1 ) P ( X + Y = x + y ) = C m x + 1 C n y − 1 C m + n x + y ⇒ P ( X = x + 1 ) / P ( X = x ) P ( Y = y ) / P ( Y = y − 1 ) = m − x x + 1 n − y + 1 y \left\{ \begin{array}{c} \frac{P\left( X=x \right) P\left( Y=y \right)}{P\left( X+Y=x+y \right)}=\frac{C_{m}^{x}C_{n}^{y}}{C_{m+n}^{x+y}}\\ \frac{P\left( X=x+1 \right) P\left( Y=y-1 \right)}{P\left( X+Y=x+y \right)}=\frac{C_{m}^{x+1}C_{n}^{y-1}}{C_{m+n}^{x+y}}\\\end{array} \right. \Rightarrow \frac{P\left( X=x+1 \right) /P\left( X=x \right)}{P\left( Y=y \right) /P\left( Y=y-1 \right)}=\frac{\frac{m-x}{x+1}}{\frac{n-y+1}{y}} ⎩ ⎨ ⎧ P ( X + Y = x + y ) P ( X = x ) P ( Y = y ) = C m + n x + y C m x C n y P ( X + Y = x + y ) P ( X = x + 1 ) P ( Y = y − 1 ) = C m + n x + y C m x + 1 C n y − 1 ⇒ P ( Y = y ) / P ( Y = y − 1 ) P ( X = x + 1 ) / P ( X = x ) = y n − y + 1 x + 1 m − x
from which
P ( X = x + 1 ) P ( X = x ) = α m − x x + 1 \frac{P\left( X=x+1 \right)}{P\left( X=x \right)}=\alpha \frac{m-x}{x+1} P ( X = x ) P ( X = x + 1 ) = α x + 1 m − x
Then by induction
P ( X = x ) = P ( X = 0 ) α x C m x , x = 0 , 1 , . . . , m P\left( X=x \right) =P\left( X=0 \right) \alpha ^xC_{m}^{x},x=0,1,...,m P ( X = x ) = P ( X = 0 ) α x C m x , x = 0 , 1 , ... , m
We have
∑ x = 0 m P ( X = x ) = 1 ⇒ ∑ x = 0 m P ( X = 0 ) α x C m x = 1 ⇒ ⇒ P ( X = 0 ) ( α + 1 ) m = 1 ⇒ P ( X = 0 ) = 1 ( α + 1 ) m \sum_{x=0}^m{P\left( X=x \right)}=1\Rightarrow \sum_{x=0}^m{P\left( X=0 \right) \alpha ^xC_{m}^{x}}=1\Rightarrow \\\Rightarrow P\left( X=0 \right) \left( \alpha +1 \right) ^m=1\Rightarrow P\left( X=0 \right) =\frac{1}{\left( \alpha +1 \right) ^m} ∑ x = 0 m P ( X = x ) = 1 ⇒ ∑ x = 0 m P ( X = 0 ) α x C m x = 1 ⇒ ⇒ P ( X = 0 ) ( α + 1 ) m = 1 ⇒ P ( X = 0 ) = ( α + 1 ) m 1
Denote p = α α + 1 ⇒ α = p 1 − p p=\frac{\alpha}{\alpha +1}\Rightarrow \alpha =\frac{p}{1-p} p = α + 1 α ⇒ α = 1 − p p
Then P ( X = x ) = 1 ( α + 1 ) m α x C m x = C m x p x ( 1 − p ) m − x ⇒ X ∼ B i n ( m , p ) P\left( X=x \right) =\frac{1}{\left( \alpha +1 \right) ^m}\alpha ^xC_{m}^{x}=C_{m}^{x}p^x\left( 1-p \right) ^{m-x}\Rightarrow X\sim Bin\left( m,p \right) P ( X = x ) = ( α + 1 ) m 1 α x C m x = C m x p x ( 1 − p ) m − x ⇒ X ∼ B in ( m , p )
Next,
P ( Y = y ) P ( Y = y − 1 ) = α n − y + 1 y ⇒ ⇒ P ( Y = y ) = P ( Y = 0 ) α y C n y ∑ y = 0 n P ( Y = y ) = 1 ⇒ P ( Y = 0 ) ( 1 + α ) n = 1 ⇒ P ( Y = 0 ) = 1 ( α + 1 ) n ⇒ ⇒ P ( Y = y ) = 1 ( α + 1 ) n α y C n y = C n y p y ( 1 − p ) n − y ⇒ Y ∼ B i n ( n , p ) \frac{P\left( Y=y \right)}{P\left( Y=y-1 \right)}=\alpha \frac{n-y+1}{y}\Rightarrow \\\Rightarrow P\left( Y=y \right) =P\left( Y=0 \right) \alpha ^yC_{n}^{y}\\\sum_{y=0}^n{P\left( Y=y \right) =1}\Rightarrow P\left( Y=0 \right) \left( 1+\alpha \right) ^n=1\Rightarrow P\left( Y=0 \right) =\frac{1}{\left( \alpha +1 \right) ^n}\Rightarrow \\\Rightarrow P\left( Y=y \right) =\frac{1}{\left( \alpha +1 \right) ^n}\alpha ^yC_{n}^{y}=C_{n}^{y}p^y\left( 1-p \right) ^{n-y}\Rightarrow Y\sim Bin\left( n,p \right) P ( Y = y − 1 ) P ( Y = y ) = α y n − y + 1 ⇒ ⇒ P ( Y = y ) = P ( Y = 0 ) α y C n y ∑ y = 0 n P ( Y = y ) = 1 ⇒ P ( Y = 0 ) ( 1 + α ) n = 1 ⇒ P ( Y = 0 ) = ( α + 1 ) n 1 ⇒ ⇒ P ( Y = y ) = ( α + 1 ) n 1 α y C n y = C n y p y ( 1 − p ) n − y ⇒ Y ∼ B in ( n , p )
Comments