Question #314778




Given: Population (6,7,8,9 and 10)




A sample of size 2 is to be Taken from this population.




a. How many samples are possible?



b. Construct sampling distribution of the sample means

1
Expert's answer
2022-03-21T00:16:01-0400

There are C52=10C_{5}^{2}=10 possible samples.

The samples are

(6,7),xˉ=6.5(6,8),xˉ=7(6,9),xˉ=7.5(6,10),xˉ=8(7,8),xˉ=7.5(7,9),xˉ=8(7,10),xˉ=8.5(8,9),xˉ=8.5(8,10),xˉ=9(9,10),xˉ=9.5P(xˉ=6.5)=0.1P(xˉ=7)=0.1P(xˉ=7.5)=0.2P(xˉ=8)=0.2P(xˉ=8.5)=0.2P(xˉ=9)=0.1P(xˉ=9.5)=0.1\left( 6,7 \right) ,\bar{x}=6.5\\\left( 6,8 \right) ,\bar{x}=7\\\left( 6,9 \right) ,\bar{x}=7.5\\\left( 6,10 \right) ,\bar{x}=8\\\left( 7,8 \right) ,\bar{x}=7.5\\\left( 7,9 \right) ,\bar{x}=8\\\left( 7,10 \right) ,\bar{x}=8.5\\\left( 8,9 \right) ,\bar{x}=8.5\\\left( 8,10 \right) ,\bar{x}=9\\\left( 9,10 \right) ,\bar{x}=9.5\\\\P\left( \bar{x}=6.5 \right) =0.1\\P\left( \bar{x}=7 \right) =0.1\\P\left( \bar{x}=7.5 \right) =0.2\\P\left( \bar{x}=8 \right) =0.2\\P\left( \bar{x}=8.5 \right) =0.2\\P\left( \bar{x}=9 \right) =0.1\\P\left( \bar{x}=9.5 \right) =0.1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS