A10. If X and Y are independent binomial random variables with identical parameters n
and p, show analytically that the conditional probability of X, given that X + Y = m
is the hypergeometric distribution.
X,Y∼Bin(n,p)⇒X+Y∼Bin(2n,p)P(X=k∣X+Y=m)=P(X=k,Y=m−k)P(X+Y=m)==Cnkpk(1−p)n−kCnm−kpm−k(1−p)n−m+kC2nmpm(1−p)2n−m==CnkCnm−kC2nm−hypergeometric with parameters 2n,n,mX,Y\sim Bin\left( n,p \right) \Rightarrow X+Y\sim Bin\left( 2n,p \right) \\P\left( X=k|X+Y=m \right) =\frac{P\left( X=k,Y=m-k \right)}{P\left( X+Y=m \right)}=\\=\frac{C_{n}^{k}p^k\left( 1-p \right) ^{n-k}C_{n}^{m-k}p^{m-k}\left( 1-p \right) ^{n-m+k}}{C_{2n}^{m}p^m\left( 1-p \right) ^{2n-m}}=\\=\frac{C_{n}^{k}C_{n}^{m-k}}{C_{2n}^{m}}-hypergeometric\,\,with\,\,parameters\,\,2n,n,mX,Y∼Bin(n,p)⇒X+Y∼Bin(2n,p)P(X=k∣X+Y=m)=P(X+Y=m)P(X=k,Y=m−k)==C2nmpm(1−p)2n−mCnkpk(1−p)n−kCnm−kpm−k(1−p)n−m+k==C2nmCnkCnm−k−hypergeometricwithparameters2n,n,m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments