Question #314473

A10. If X and Y are independent binomial random variables with identical parameters n


and p, show analytically that the conditional probability of X, given that X + Y = m


is the hypergeometric distribution.



1
Expert's answer
2022-03-24T19:15:31-0400

X,YBin(n,p)X+YBin(2n,p)P(X=kX+Y=m)=P(X=k,Y=mk)P(X+Y=m)==Cnkpk(1p)nkCnmkpmk(1p)nm+kC2nmpm(1p)2nm==CnkCnmkC2nmhypergeometricwithparameters2n,n,mX,Y\sim Bin\left( n,p \right) \Rightarrow X+Y\sim Bin\left( 2n,p \right) \\P\left( X=k|X+Y=m \right) =\frac{P\left( X=k,Y=m-k \right)}{P\left( X+Y=m \right)}=\\=\frac{C_{n}^{k}p^k\left( 1-p \right) ^{n-k}C_{n}^{m-k}p^{m-k}\left( 1-p \right) ^{n-m+k}}{C_{2n}^{m}p^m\left( 1-p \right) ^{2n-m}}=\\=\frac{C_{n}^{k}C_{n}^{m-k}}{C_{2n}^{m}}-hypergeometric\,\,with\,\,parameters\,\,2n,n,m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS